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Abstract
1.	 Estimating	the	impacts	of	anthropogenic	disturbances	requires	an	understand-
ing	 of	 the	 habitat-	use	 patterns	 of	 individuals	within	 a	 population.	 This	 is	 es-
pecially	the	case	when	disturbances	are	 localized	within	a	population's	spatial	
range,	 as	variation	 in	habitat	use	within	a	population	can	drastically	 alter	 the	
distribution	of	impacts.

2.	 Here,	 we	 illustrate	 the	 potential	 for	 multilevel	 binomial	 models	 to	 generate	
spatial	networks	from	capture–	recapture	data,	a	common	data	source	used	in	
wildlife	studies	to	monitor	population	dynamics	and	habitat	use.	These	spatial	
networks	capture	which	regions	of	a	population's	spatial	distribution	share	simi-
lar/dissimilar	individual	usage	patterns,	and	can	be	especially	useful	for	detect-
ing	structured	habitat	use	within	the	population's	spatial	range.

3.	 Using	 simulations	and	18	years	of	 capture–	recapture	data	 from	St.	 Lawrence	
Estuary	(SLE)	beluga,	we	show	that	this	approach	can	successfully	estimate	the	
magnitude	of	similarities/dissimilarities	in	individual	usage	patterns	across	sec-
tors,	and	identify	sectors	that	share	similar	individual	usage	patterns	that	differ	
from	other	 sectors,	 that	 is,	 structured	habitat	use.	 In	 the	case	of	SLE	beluga,	
this	method	identified	multiple	clusters	of	individuals,	each	preferentially	using	
restricted	areas	within	their	summer	range	of	the	SLE.

4.	 Multilevel	 binomial	models	 can	be	 effective	 at	 estimating	 spatial	 structure	 in	
habitat	use	within	wildlife	populations	sampled	by	capture–	recapture	of	individ-
uals,	and	can	be	especially	useful	when	sampling	effort	is	not	evenly	distributed.	
Our	 finding	of	 a	 structured	habitat	 use	within	 the	 SLE	beluga	 summer	 range	
has	direct	implications	for	estimating	individual	exposures	to	localized	stressors,	
such	as	underwater	noise	from	shipping	or	other	activities.

K E Y W O R D S
capture–	recapture	data,	Delphinapterus leucas,	habitat	use,	network	community	detection,	
photo	identification,	spatial	networks
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1  |  INTRODUC TION

An	understanding	of	the	spatial	and	temporal	distribution	of	a	spe-
cies	of	concern	is	of	central	importance	to	conservation	and	manage-
ment	(Evans	&	Hammond,	2004).	The	existence	of	spatial	structuring	
within	populations	can	have	important	ecological	and	management	
implications.	If	a	population	as	a	whole	can	be	considered	as	highly	
mixed,	that	is,	with	individuals	showing	no	strong	patterns	of	home	
range	use	or	substructuring	within	the	wider	population,	then	all	in-
dividuals	are	equally	likely	to	feel	the	impacts	of	local	changes	in	the	
environment.	In	contrast,	if	the	population	cannot	be	considered	to	
be	highly	mixed,	and	shows	strong	substructuring	and	site	 fidelity	
patterns,	 local	 stressors	might	 have	 a	 disproportionate	 impact	 on	
segments	of	the	population.	For	example,	if	noise	pollution	increased	
in	only	one	sector,	in	a	highly	mixed	population	all	individuals	would	
be	lightly	impacted,	but	in	a	spatially	structured	population	a	subset	
of	 the	 population	would	 be	 highly	 impacted.	 These	differences	 in	
spatial	 structuring	of	populations	can	 lead	 to	biased	estimation	of	
the	likelihood	and	magnitude	of	impacts	from	local	stressors	both	at	
the	individual	and	population	levels	(DeFur	et	al.,	2007).

Capture–	recapture	methods	are	commonly	used	to	monitor	in-
dividuals	 within	 populations,	 providing	 information	 on	 vital	 rates,	
demography,	and	 insights	 into	within-	population	social	mixing	and	
habitat	use	 (e.g.,	Koivuniemi	et	al.,	2016).	Photo	 identification	 is	a	
long-	recognized	method	to	“capture”	individuals	with	distinct	mark-
ings	(hereafter	photo-	ID	data)	(Urian	et	al.,	2015),	and	digital	photog-
raphy	along	with	high-	resolution	video	and	machine	learning	models	
to	 identify	 individuals	has	 led	 to	 large	capture–	recapture	datasets	
(Schneider	et	al.,	2019).	Novel	statistical	and	computational	meth-
ods	applied	to	these	capture–	recapture	datasets	have	enhanced	the	
potential	 for	quantifying	within-	population	structures	 through	 the	
use	of	social	network	analysis	(Perryman	et	al.,	2019;	Schilds	et	al.,	
2019;	Silk	et	al.,	2021).

It	 is	 often	 the	 case,	 however,	 that	 efforts	 when	 collecting	
capture–	recapture	data	are	not	evenly	distributed.	This	is	especially	
the	case	when	the	population	under	study	occupies	a	 large	spatial	
extent,	and	where	capture	methods	are	not	static	as	in	the	case	with	
fixed	camera	traps.	This	variation	in	sampling	effort	can	heavily	bias	
estimates	of	social	and	spatial	networks	(Farine	&	Whitehead,	2015;	
Hupman	et	al.,	2018;	Whitehead,	2008).	Datastream	permutations	
have	been	used	to	assess	potential	biases	in	network	estimates	from	
capture–	recapture	 data	 when	 estimating	 networks	 directly	 from	
counts	of	 individuals	seen	together	or	 in	the	same	regions	 (Farine,	
2017;	Silk	et	al.,	2021).	Alternatively,	state-	space	models	have	been	
applied	 to	 capture–	recapture	 data	 to	 include	 potential	 sampling	
biases	 in	estimated	networks	when	based	on	counts	of	 individuals	
seen	together	(Gimenez	et	al.,	2019).	Both	of	these	approaches	build	
networks	where	individuals	are	the	nodes,	and	the	edges	represent	

links	 between	 individuals.	Here,	we	 propose	 a	multilevel	 binomial	
model	approach	that	uses	capture–	recapture	data	to	estimate	spa-
tial	networks,	 that	 is,	where	the	nodes	are	spatial	 regions	and	the	
edges	between	nodes	represent	the	magnitude	of	similarity	 in	the	
individual	using	those	regions.	By	taking	this	approach,	 it	then	be-
comes	possible	to	quantify	spatial	structure	in	habitat	use	within	a	
population's	spatial	distribution.

The	 multilevel	 binomial	 modeling	 approach	 that	 we	 propose	
to	use	here	does	not	have	a	large	body	of	literature	to	draw	on	for	
use	with	 capture–	recapture	data,	but	presents	unique	advantages	
(Koster	 &	 McElreath,	 2017).	 If	 sampling	 efforts	 varies	 by	 region	
within	a	population's	spatial	distribution,	sighting	probability	of	indi-
viduals	could	be	greatly	inflated	or	deflated.	The	use	of	a	multilevel	
structure,	however,	allows	for	sighting	probabilities	to	be	nested	per	
region	and	expressed	in	relative	terms,	that	is,	as	deviations	from	the	
mean	 probability	 of	 sighting.	 This	 allows	 the	 approach	 to	 identify	
the	relative	magnitude	of	use	of	a	particular	region	for	each	individ-
ual.	This	generates	a	particular	usage	profile	for	each	region,	that	is,	
which	individual	highly/lowly	use	that	region	(“high	users”	and	“low	
users”	hereafter).	It	is	then	possible	to	quantify	how	correlated	the	
usage	 profiles	 between	 regions	 are,	 providing	 information	 about	
which	regions	share	similar/dissimilar	usage	profiles.	This	approach	
essentially	quantifies	the	extent	to	which	regions	share	the	same	in-
dividuals	while	correcting	for	differences	in	sampling	effort	over	the	
course	of	the	study.	We	suggest	that	this	approach	can	successfully	
generate	effort-	corrected	spatial	networks	within	populations,	and	
can	help	identify	differential	patterns	in	habitat	use	among	individ-
uals	and	regions.

To	 evaluate	 the	 performance	 of	multilevel	 binomial	models	 at	
identifying	 spatial	 structuring	 within	 animal	 populations,	 we	 first	
tested	the	approach	with	simulated	datasets	with	and	without	pop-
ulation	spatial	structuring.	We	then	applied	the	method	to	observed	
data,	using	a	long-	term	(18	years)	photo-	ID	dataset	of	beluga	from	
the	St.	Lawrence	Estuary	(SLE),	Canada,	and	quantified	spatial	struc-
turing	within	the	population's	summer	range	in	the	SLE.	Finally,	we	
discuss	how	these	estimates	of	population	spatial	structuring	pro-
vide	important	information	for	understanding	current	local	stressors	
and	their	potential	impacts	on	this	endangered	and	declining	popu-
lation	(Lesage,	2021).

2  |  MATERIAL AND METHODS

2.1  |  Study population

The	SLE	beluga	population	resides	in	the	lower	St.	Lawrence	during	
the	winter	and	moves	 into	the	upper	St.	Lawrence	 in	the	summer.	
As	this	population	is	endangered	and	occupies	a	busy	marine	traffic	

T A X O N O M Y  C L A S S I F I C A T I O N
Applied	ecology;	Behavioural	ecology;	Conservation	ecology;	Movement	ecology;	Spatial	
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area	 in	 the	 summer,	 there	 has	 been	 considerable	 effort	 to	 under-
stand	their	distribution	and	habitat	use	among	other	things.	In	par-
ticular,	a	lot	of	work	has	been	done	to	identify	hot	spots	of	use	and	
how	habitat	use	varies	by	age	and	sex	to	better	mitigate	threats	to	
this	population	(Gosselin	et	al.,	2017;	Lefebvre	et	al.,	2012;	Lemieux	
Lefebvre	et	 al.,	 2018;	Michaud,	2005;	Ouellet	 et	 al.,	 2021).	These	
studies	focused	largely	on	population-	level	patterns,	such	as	identi-
fying	which	areas	are	used	the	most.	In	this	study,	we	use	individual-	
level	data	to	better	understand	whether	these	areas	of	high	use	form	
as	a	result	of	nonmobile	individuals	or	of	multiple	clusters	of	mobile	
individuals.

2.2  |  Data

Individual	photo-	identification	boat	surveys	were	conducted	from	
June	 to	October	between	1989	and	2007	as	part	of	 an	ongoing	
long-	term	study	on	beluga	social	organization.	The	choice	of	sur-
vey	area	on	a	given	day	was	selected	in	a	way	to	avoid	resampling	
areas	 covered	 the	 previous	 days,	 and	 also	 according	 to	weather	
conditions.	 This	 resulted	 in	 approximately	 1–	4	 sectors	 and	
2–	5	herds	observed	on	each	survey,	with	only	2%	of	the	individu-
als	captured	in	two	different	herds	on	the	same	day.	When	beluga	
were	 encountered,	 the	GPS	 position	 of	 the	 research	 vessel	was	
noted,	and	a	herd	follow	was	undertaken	to	photograph	as	many	
individuals	as	possible	within	 the	herd	using	a	handheld	camera.	
A	herd	follow	was	limited	to	3	h,	with	GPS	location	noted	at	least	
every	30	min.	A	detailed	description	of	the	photo-	ID	survey	pro-
tocol	is	available	in	Michaud	(2014).	Surveys	were	neither	system-
atic	nor	random	in	design,	but	covered	various	sectors	of	a	 large	
portion	of	the	population's	summer	distribution	and	a	broad	range	
of	habitats.	Sampling	effort	was	unevenly	distributed	across	 the	
summer	 range	divided	 into	 three	 sectors	 (or	 stratum),	 each	 sub-
divided	 into	four	equal	size	zones	 (Figure	1).	These	sectors	were	
delineated	with	the	marine	and	middle	estuary	 limits	and	islands	
dividing	the	estuary	into	south	and	north	channels	with	respect	to	
prior	knowledge	of	beluga	age–	sex	segregation	at	the	start	of	the	
data	collection	(i.e.,	1989).

Each	photograph	was	treated	using	standard	protocols	for	image	
selection,	scoring,	and	matching	(Urian	et	al.,	2015).	Each	uniquely	
identified	 individual	 was	 attributed	 a	 resightability	 index	 ranging	
from	1	to	3	based	on	the	degree	of	distinctiveness	of	markings.	This	
resulted	in	a	photo-	identification	collection	of	821	unique	individu-
als	that	were	recaptured	on	average	9	times	over	the	study	period	
(range	1–	90),	and	which	were	each	associated	with	a	GPS	position	
and	 sector	 of	 initial	 encounter	 with	 the	 beluga	 herd.	 Genetically	
determined	 sexes	 were	 available	 for	 only	 29%	 of	 the	 individuals	
included	to	the	catalog.	From	 individuals	with	known	sex,	 females	
had	 an	 estimated	mean	of	 12	photo-	IDs	 and	males	17	photo-	IDs,	
suggesting	some	bias	in	terms	of	capturability	(Table	S1).	Given,	age	
classes	were	not	available	for	most	individuals,	and	the	low	percent-
age	of	individuals	with	known	sex,	the	remaining	analysis	focused	on	
the	population	as	a	whole.

2.3  |  Multilevel binomial model

The	probability	of	seeing	an	individual	in	each	delineated	sector	of	
the	SLE	was	estimated	using	a	series	of	binomial	models	with	cor-
related	 random	 effects.	 In	 these	 models,	 the	 dependent	 variable	
was	 the	number	of	 times	an	 individual	was	captured	photographi-
cally	 (i.e.,	 photo	 identified)	 in	 a	 sector.	The	multilevel	 structure	of	
the	models	allowed	for	the	estimation	of	both	the	mean	probability	
of	photo	identifying	an	individual	in	each	sector	and	the	individual-	
level	differences	 in	this	probability	by	using	individual	 ID	as	a	ran-
dom	 intercept.	 Furthermore,	 by	 allowing	 for	 correlation	 between	
the	 individual	 differences	 of	 the	 sectors	 it	 is	 possible	 to	 estimate	
the	similarities	in	users	between	the	sectors	(e.g.,	if	two	sectors	are	
highly	correlated,	this	suggests	that	the	individuals	in	each	have	the	
same	usage	profiles	–		i.e.,	individual	differences	in	being	seen).	If	we	
take,	as	an	example,	a	case	where	the	study	area	comprises	only	two	
sectors,	then	the	probability	of	finding	individual	i	in	a	sector	can	be	
modeled	using	a	series	of	multilevel	binomial	models	as:

where p1,i	is	the	probability	of	seeing	beluga	 i 	in	sector	1,	p2,i is the 
probability	of	 seeing	beluga	 i 	 in	 sector	2,	�1	 and	�2	 are	 the	 inter-
cepts,	that	 is,	 the	mean	probability	of	seeing	a	beluga	 in	sectors	1	
and	2,	and	�1i	 and	�2i	 are	 the	estimated	 individual	differences	 (i.e.,	
random	intercepts)	from	the	mean	probability	of	capture	in	sectors	
1	 and	 2,	 respectively.	 The	mean	 probabilities	�1	 and	�2	 represent	
preference/avoidance	 of	 the	 specified	 sector,	while	�1i	 and	�2i	 are	
the	sector-	specific	 individual	deviations	from	the	mean	probability	
of	capture.	As	a	result,	it	is	possible	to	model	the	covariance	of	the	
individual	differences	between	two	sectors	using	a	multivariate	nor-
mal	distribution	(Koster	&	McElreath,	2017):

This	multivariate	normal	distribution	has	a	mean	of	0	and	a	cova-
riance	matrix	Ωv.	Here,	 the	diagonal	entries	 in	the	covariance	matrix	
(�1,1	and	�2,2)	represent	the	magnitude	of	individual	differences	within	
a	sector.	This	magnitude	of	 individual	differences	 identifies	whether	
there	are	 individual	differences	 in	 the	probability	of	being	seen	 in	a	
sector	(i.e.,	high	values	of	�1,1	and	�2,2),	or	whether	all	individuals	are	
equally	 likely	 to	 be	 seen	 (i.e.,	 low	 values	 of	�1,1	 and	�2,2).	 The	 off-	
diagonal	entries	 (�2,1	and	�1,2)	are	the	covariance	estimates	between	
sectors,	that	is,	identifying	sectors	that	share	similar	user	profiles.	By	
converting	covariance	of	 individual	differences	between	sectors	and	
correlations,	 this	multilevel	modeling	approach	quantifies	how	much	

logit
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)
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logit
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information	 individual	differences	 in	the	probability	of	being	seen	 in	
one	sector	can	provide	about	another	sector.	Positive	correlations	sug-
gest	that	the	high/low	users	in	one	sector	are	similarly	high/low	users	
in	another	sector,	while	negative	correlations	suggest	high/low	users	in	
one	sector	are	the	low/high	users	in	another	sector.

This	 model	 can	 be	 fit	 with	 a	 Bayesian	 approach	 using	 brms	
(Bürkner,	2018)	with	a	multilevel	syntax:	for	example,	bf(sector	1|tri-
als(n)	~ 1 +	(1|q|ID))	+	bf(sector	2|trials(n)	~ 1 +	(1|q|ID))	+	binomial().	
Here,	sector	1	indicates	how	many	times	each	individual	was	seen	in	
sector	1.	While	n	is	the	total	number	of	times	an	individual	was	cap-
tured	photographically,	and	allows	for	the	estimation	of	the	proba-
bility	of	being	seen	when	individuals	have	not	all	been	captured	the	
same	number	of	times.	Finally,	q	represents	an	arbitrary	character	
choice	that	allows	correlations	between	the	estimates	of	random	in-
tercepts	for	each	sector	(Bürkner,	2018).

2.3.1  |  Dealing	with	biases	in	
capture–	recapture	datasets

This	multilevel	modeling	approach	accounted	for	repeated	sampling	
of	individuals,	and	provided	an	estimate	of	whether	some	individuals	
were	seen	more	or	less	often	than	the	mean	probability	of	capture	
in	each	sector	(i.e.,	�1i	and	�2i).	Unlike	the	mean	probabilities	�1	and	
�2	that	represent	preference/avoidance	of	a	specified	sector,	these	
estimates	of	individual	differences	from	the	mean	probability	of	cap-
ture	were	not	impacted	by	differential	sampling	among	sectors.	This	
was	not	the	case	for	estimates	of	the	mean	probability	of	capture	for	
each	sector	(i.e.,	�1	and	�2),	which	were	expected	to	increase	in	highly	
sampled	 sectors.	 For	 example,	 the	 oversampling	 of	 the	 Saguenay	
River	 compared	 to	 other	 sectors	 (SAG	 in	 Figure	 1)	 increased	 the	
mean	 probability	 of	 capturing	 individuals	 in	 that	 sector.	 However,	

F I G U R E  1 Spatial	distribution	of	each	
of	the	7525	photo	identifications	(red	
dots)	with	the	821	uniquely	identified	
beluga	from	the	St.	Lawrence	Estuary,	
Canada	(red	square	in	the	inset	map)	
over	our	study	period	(1989–	2007).	The	
14	sectors	are	outlined	and	labeled	in	
white,	and	cover	the	summer	range	of	the	
population
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oversampling	of	this	sector	was	unlikely	to	affect	the	relative	prob-
ability	of	being	captured	among	individuals	given	that	all	individuals’	
chances	of	being	captured	were	likely	to	go	up	or	down	equally.

Similarly,	potential	biases	due	to	ease	of	recognition,	for	example,	
some	 individuals	 or	 age	 classes	 might	 bear	 more	 distinctive	 mark-
ings	than	others,	are	minimized	using	a	multilevel	binomial	approach	
as	 it	 focuses	mainly	on	differences	 in	 the	probability	of	being	seen	
between	sectors.	For	example,	 if	 juveniles	are	5	times	 less	 likely	 to	
be	successfully	photo	identified	than	adults,	then	they	might	be	less	
often	represented	in	the	photo-	ID	database	compared	to	other	age	
classes.	However,	the	difference	in	distribution	of	these	fewer	photo-	
identified	juveniles	across	sectors	is	unlikely	to	be	impacted.	For	in-
stance,	if	we	successfully	photo	identified	all	adults	15	times	and	all	
juveniles	3	 times,	 and	 if	 both	 spent	 twice	 as	much	of	 their	 time	 in	
the	Saguenay	River	compared	to	all	other	sectors,	then	the	photo-	ID	
distribution	 (seen	 in	 vs.	 outside	 of	 the	 Saguenay	 River)	 for	 adults	
and	 juveniles	would	 be	 expected	 to	 be	 10:5	 and	 2:1,	 respectively.	
In	this	example,	the	capturability	varies	by	age	class,	but	in	both	age	
classes	the	probability	of	being	captured	in	the	Saguenay	River	would	
be	 twice	 that	of	 the	 remaining	 sector.	 The	 adaptive	partial	 pooling	
properties	of	multilevel	models,	however,	leads	individuals	with	few	
photo-	IDs,	and	thus	which	contain	less	information,	to	be	less	likely	
to	 show	measurable	deviations	 from	 the	mean	probability	of	being	

captured.	This	means	that	if	an	age	or	sex	class	has	very	little	chance	
of	being	identified	by	photo-	ID	(e.g.,	newborn	calves	or	very	young	
individuals),	 then	 they	are	 likely	 to	contribute	 less	 to	 the	estimated	
spatial	structures	estimated	by	the	multilevel	binomial	approach.

By	using	a	multilevel	modeling	approach,	we	also	 reduced	 the	
chance	of	false	positives	when	making	comparisons	between	many	
different	individuals	in	many	different	sectors	(i.e.,	problem	of	mul-
tiple	comparisons).	For	example,	if	we	were	to	estimate	the	differ-
ences	in	the	probability	of	being	seen	in	each	sector	separately	for	
each	individual,	the	risk	of	false	positives,	that	is,	detecting	differ-
ences	where	 there	 is	none,	would	be	 increased.	 Instead,	 if	 a	mul-
tilevel	 approach	 is	used	 to	estimate	 the	differences	 in	probability	
of	being	seen	it	is	possible	to	make	effective	use	of	partial	pooling	
to	reduce	extreme	values,	especially	in	cases	where	the	number	of	
recaptures	is	not	equal	between	individuals.	Finally,	by	running	this	
analysis	 in	a	Bayesian	framework,	we	were	able	to	place	priors	on	
the	individual	differences	within	sectors.	In	our	case,	the	model	was	
initiated	assuming	that	there	were	no	differences	between	individ-
uals	 in	 their	 use	 of	 each	 sector,	 that	 is,	 student_t(3,0,1),	 and	 as	 a	
result	no	similarity	 in	usage	profiles	between	sectors.	These	prior	
choices	are	particularly	useful	 in	sectors	with	 low	sampling	effort	
as	a	form	of	regularization	to	avoid	overstating	conclusions	where	
data	are	sparse.

F I G U R E  2 Similarity	and	dissimilarity	between	sectors	in	the	simulated	datasets:	(a)	randomly	permuted	data,	where	there	is	no	
population	spatial	structure	and	(b)	spatially	structured	data,	where	there	are	four	distinct	clusters	within	the	population.	In	(b)	the	simulated	
clusters	are	represented	by	color	codes	for	each	of	their	sectors	(Note:	CTN	is	part	of	the	orange	and	yellow	clusters).	The	green	edges	(lines)	
between	two	sectors	signify	that	the	sectors	share	high/low	users,	while	red	edges	(lines)	signify	that	they	have	opposite	high/low	users.	The	
lack	of	an	edge	signifies	that	the	high/low	users	of	one	sector	do	not	provide	information	about	the	high/low	users	of	other	sectors
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2.4  |  Network analysis

Social	networks	are	often	used	when	visualizing	and	quantifying	so-
cial	structures	within	populations,	with	individuals	often	represented	
as	nodes	and	their	interactions	as	edges	between	these	nodes	(Croft	
et	al.,	2008;	Farine	&	Whitehead,	2015).	In	our	case,	we	used	sectors	
as	nodes,	and	the	similarities	in	user	profiles	between	sectors	as	edges	
(i.e.,	�1,2	and	�2,1).	The	correlations	between	sectors	estimated	from	
the	multilevel	binomial	model	can	be	used	to	create	a	network	where	
the	posterior	predictions	of	each	correlation	parameter	correspond	to	
an	edge	weight	in	the	network.	In	this	way,	each	edge	has	a	posterior	
distribution	of	edge	weights	and	can	be	used	to	create	many	networks	
from	which	a	distribution	of	network	metrics	can	be	generated.	The	
advantage	 of	 having	 distributions	 of	 network	measures	 is	 that	 the	
measures	can	be	readily	compared,	for	example,	does	one	sector	have	
a	higher	node	strength	than	another?	It	is	also	possible	to	use	the	dis-
tribution	of	edge	weights,	and	a	chosen	threshold	(e.g.,	95%	credible	
interval),	to	highlight	only	the	edges	where	the	sign	of	the	correlation	
is	known	with	a	particular	range	of	certainty.	In	this	paper,	we	used	
this	latter	approach	to	generate	a	signed	network	(i.e.,	a	network	with	
positive	and	negative	edges).	 In	other	words,	we	created	a	network	
where	the	edges	were	formed	from	correlations	where	the	sign	was	
relatively	certain,	that	is,	the	95%	credible	interval	does	not	include	
zero	and	was	either	all	positive	or	negative.	We	then	used	a	simple	
signed	 edge	 rule	 to	 define	 network	 communities:	 where	 a	 distinct	
network	community	was	a	 set	of	nodes	 that	 shared	positive	edges	
but	no	negative	edges.	We	also	made	use	of	signed	blockmodeling,	an	
algorithm	that	can	also	be	used	to	identify	blocks	of	nodes,	and	that	
maximized	within-	block	 positive	 edges	 and	minimized	within-	block	
negative	edges	(Doreian	&	Mrvar,	2015).	While	the	signed	edge	rule	
generally	 provides	 relatively	 intuitive	 results	with	 simple	 networks,	
signed	blockmodeling	is	likely	to	be	particularly	advantageous	when	
dealing	with	more	complex	networks.	The	network	communities	de-
tected	using	 these	 two	algorithms	were	 then	 interpreted	as	 spatial	
clusters	of	individuals	and	not	as	biological	communities.

2.5  |  Testing the modeling approach

The	accuracy	of	 the	multilevel	binomial	modeling	approach	was	as-
sessed	by	generating	test	datasets	from	the	observed	photo-	ID	data.	
We	 ensured	 that	 the	 test	 datasets	 contained	 the	 same	 number	 of	
unique	individuals,	distribution	of	sightings	(i.e.,	some	individuals	were	
seen	more	than	others),	and	overall	number	of	photo-	IDs	as	the	ob-
served	dataset.	We,	however,	varied	the	spatial	location	of	individual	
photo-	ID	captures	in	two	ways.	First,	to	test	if	the	proposed	method	
correctly	detected	no	pattern	when	none	existed,	we	created	a	com-
pletely	random	test	dataset	by	permuting	the	sector	associated	with	
each	photo-	ID	 in	 the	observed	dataset.	The	expected	result	was	to	
find	no	correlations	between	sectors,	given	that	the	sectors	for	each	
photo-	ID	had	been	randomly	permuted.	To	then	test	whether	the	pro-
posed	method	could	also	correctly	 identify	patterns	when	a	known	
pattern	existed,	we	generated	a	structured	test	dataset	by	randomly	

assigning	each	uniquely	identified	individual	to	four	equally	populated	
spatial	 clusters	with	 the	 following	 and	 hypothetical	 home	 range	 of	
adjacent	sectors:	cluster	1	–		BSM,	SAG,	CTN;	cluster	2	–		CTN,	CTO,	
AMN;	cluster	3	–		AVO,	AVS,	AVN;	and	cluster	4	–		AME,	CTS,	CTE.	
Following	this,	we	altered	the	sector	of	where	the	individual	photo-	
IDs	were	taken	so	as	to	fall	within	sectors	associated	with	an	individ-
ual's	clusters,	that	is,	one	of	their	home	range	sectors.	We	did	this	by	
choosing	a	sector	for	each	photo-	ID	based	on	the	individual's	assigned	
clusters	80%	of	the	time;	a	random	sector	was	chosen	for	the	other	
20%	of	the	time,	introducing	noise	in	the	assignment	of	sectors.	We	
then	 tested	whether	 the	model	correctly	 identified	 the	correlations	
between	sectors	that	defined	the	home	range	of	each	clusters.

3  |  RESULTS

3.1  |  Testing the modeling approach

When	 the	multilevel	 binomial	model	was	 fit	 to	 the	data	with	 sec-
tors	randomly	permuted	between	all	photo-	IDs,	the	model	found	as	
expected	 no	 evidence	 for	 positive/negative	 correlations	 between	
sectors	(Figure	2a),	and	when	we	artificially	created	spatially	distinct	

TA B L E  1 Parameter	estimates	from	the	multilevel	binomial	
model	predicting	the	probability	of	capturing	an	individual	by	
sector

Parameter Estimate l−95% CI
u- 95% 
CI

sd(mu_CTN) 0.6 0.52 0.69

sd(mu_AVS) 0.92 0.78 1.07

sd(mu_CTE) 1.01 0.89 1.14

sd(mu_AMN) 1.15 0.48 1.87

sd(mu_AVO) 1.17 1.05 1.3

sd(mu_CTS) 1.28 1.05 1.53

sd(mu_SAG) 1.41 1.24 1.58

sd(mu_BSM) 1.45 1.23 1.7

sd(mu_CTO) 1.45 1.13 1.8

sd(mu_AVE) 1.48 1.01 2.04

sd(mu_AVN) 1.6 1.19 2.07

sd(mu_AMS) 2.34 1.63 3.21

sd(mu_AME) 2.55 2.04 3.16

sd(mu_AMO) 2.92 1.4 5.34

Notes: Estimated	magnitudes	of	within-	sector	individual	differences	
in	usage	(sd;	e.g.,	�1,1)	are	presented	for	each	sector.	Higher	estimates	
indicate	higher	contrast	between	high	users	and	low	users	of	that	
sector,	whereas	lower	estimates	indicate	a	greater	homogeneity	in	
usage.	To	facilitate	interpretation,	we	have	ordered	the	table	by	lowest	
to	highest	estimates	of	individual	differences	in	usage,	and	provide	the	
lower	and	upper	95%	credible	intervals	for	each	estimate	(e.g.,	l–	95%	
CI,	u-	95%CI).	As	the	number	of	parameters	in	the	model	is	large,	the	
overall	mean	by	sector	(i.e.,	�i),	and	estimated	correlations	between	
individual	differences	(e.g.,	�2,1)	are	presented	in	the	supplementary	
section	(Table	S2).
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clusters,	 the	model	accurately	estimated	the	correlations	between	
sectors	 that	 defined	 these	 artificial	 population	 spatial	 structures	
(Figure	2b).	The	simple	signed	edge	rule	and	blockmodeling	algorithm	
applied	to	the	simulated	datasets	both	revealed	the	four	artificially	
generated	spatial	clusters,	though	the	blockmodeling	algorithm	had	
difficulty	with	 the	multimembership	node,	as	 it	 could	not	assign	a	
node	 to	 two	blocks	 (i.e.,	 the	CTN	node	 that	was	 shared	 between	
clusters	1	and	2).

3.2  |  Quantifying individual variation in habitat use 
among sectors from observed data

The	 model,	 when	 applied	 to	 the	 18	 years	 of	 observed	 photo-	ID	
data,	 indicated	differences	between	high	and	 low	users	 in	 all	 sec-
tors,	 though	 the	magnitude	 of	 these	 individual	 differences	 varied	
(Table	 1).	 The	 model	 also	 found	 that	 these	 individual	 differences	
were	correlated	between	sectors	(Table	S2),	indicating	a	high	mag-
nitude	of	similarity/dissimilarity	between	sectors	in	terms	of	which	
beluga	used	 those	sectors	heavily	or	 rarely.	Taking	 two	sectors	as	
examples,	 for	example,	 the	SAG	and	CTE	sectors,	 the	top	10	esti-
mated	high	users	of	the	SAG	(i.e.,	 individuals	with	a	relatively	high	
probability	of	being	found	there,	blue	dots	 in	Figure	3a),	were	 low	
users	of	the	CTE	sector	(blue	dots	in	Figure	3b).

Our	 model	 indicated	 that	 the	 CTN	 sector	 was	 relatively	 uni-
formly	used	by	all	individuals	(i.e.,	low	“sd”	value;	Table	1)	compared	
to	other	sectors.	 In	contrast,	 individual	differences	 in	usage	were	

the	largest	in	the	AME,	AMO,	AMS	sectors,	with	some	very	high/
low	users	of	those	sectors	(Table	1).

3.3  |  Characterizing the population spatial network

Spatial	 patterns	 emerged	 from	 using	 the	 between	 sector	 correla-
tions	to	generate	a	signed	network	overlaid	on	top	of	the	sectors	in	
the	SLE.	Applying	the	simple	signed	rule	and	the	blockmodeling	al-
gorithm	to	delineate	network	communities,	both	indicate	that	there	
are	 three	 distinct	 spatial	 clusters	 of	 individuals	 within	 the	 beluga	
summer	range:	the	lower	SLE	(AVO,	AVS,	AVE,	AVN),	the	Saguenay	
River	and	mouth	(BSM,	SAG,	CTN),	and	the	upper	Estuary	and	east-
ern	 portion	 of	 the	 lower	 SLE	 (CTE,	 CTS,	 CTO,	 AME,	 AMS,	 AMO,	
AMN)	(Figure	4).	In	the	case	of	AVS,	however,	the	simple	signed	rule	
suggested	multimembership	for	this	sector,	while	the	blockmodeling	
algorithm	found	AVS	to	be	either:	(a)	part	of	the	cluster	containing	
(AVO,	AVN,	AVE)	or	(b)	that	the	two	clusters	(orange	and	purple	in	
Figure	4)	merged	into	one	depending	on	the	choice	of	weighting	pa-
rameter	(i.e.,	emphasizing	positive	or	negative	edges).

4  |  DISCUSSION

Here,	we	have	shown	 that	using	capture–	recapture	data	 it	 is	pos-
sible	 to	 estimate	 spatial	 networks	 that	 can	 identify	 spatial	 struc-
tures	within	populations	while	controlling	unequal	sampling	effort.	

F I G U R E  3 Estimate	of	the	relative	use	of	the	(a)	SAG	and	(b)	CTE	sectors	by	each	photo-	identified	individual	(i.e.,	deviation	from	mean	
use,	�SAGi	and	�CTEi).	The	values	are	deviations	(black	points)	from	the	mean	probability	of	recapturing	individuals	within	a	sector	(red	dashed	
line)	and	are	on	a	logit	scale.	The	horizontal	gray	lines	represent	the	95%	credible	interval.	The	estimated	top	10	users	of	the	SAG	sector	
are	represented	by	blue	dots	(panel	a),	and	those	same	individuals	are	also	highlighted	in	blue	in	the	CTE	sector	(panel	b),	illustrating	how	
correlations	between	sectors	were	estimated
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Applying	 this	approach	 to	data	 from	beluga	 in	 the	SLE	suggests	a	
non-	random	habitat	use	within	the	summer	range	of	this	population.

In	particular,	the	use	of	the	multilevel	binomial	model	provided	
information	about	within-	sector	usage	patterns	of	individual	beluga.	
Our	 results	 showed	 that	 some	 sectors	 were	 predominantly	 used	
by	a	subset	of	individuals,	while	other	sectors	were	used	more	uni-
formly	by	all	 individuals	 in	 the	population.	The	CTN	sector	 for	 in-
stance	appeared	as	a	potential	high	mixing	zone	for	the	population,	
whereas	the	AME	sector	seemed	to	be	used	by	a	specific	subset	of	
the	population.	These	findings	align	well	with	a	recent	study	on	hab-
itat	connectivity	in	this	population	exploiting	a	different	dataset,	and	
suggesting	 that	 the	CTN	sector	 interconnects	 strongly	with	other	
sectors	(Ouellet	et	al.,	2021).

The	 use	 of	 the	 multilevel	 binomial	 model	 also	 provided	 infor-
mation	 about	 the	 similarity	 in	 usage	 profiles	 across	 sectors.	 Our	
results	across	sectors	add	to	the	evidence	that	the	beluga	popula-
tion	cannot	be	assumed	 to	be	 randomly	mixing	within	 its	 summer	
habitat,	suggesting	instead	the	existence	of	multiple	spatial	clusters	

of	individuals	that	make	use	of	particular	sectors	of	the	SLE	and	the	
Saguenay	River.	This	 result	 suggests,	 for	example,	 that	 individuals	
that	are	repeatedly	seen	in	the	SAG	sector	are	also	repeatedly	seen	
in	the	BSM	and	CTN	sectors,	but	are	seen	very	little	in	the	CTE	and	
CTS	sectors	 (Figure	4).	 It	should	be	noted	that	 the	 identified	clus-
ters	 should	not	be	seen	as	hard	boundaries.	For	example,	we	 find	
very	 little	difference	between	high	and	 low	users	 in	the	CTN,	and	
that	this	sector	clusters	with	the	BSM	and	SAG	sectors.	In	this	case,	
the	small	differences	in	usage	patterns	correlated	with	differences	
in	usage	patterns	of	BSM	and	SAG.	Rather	than	looking	at	inclusion	
within	a	cluster	as	a	hard	boundary,	a	more	nuanced	view	of	a	node	
inclusion	within	a	cluster	can	be	obtained	by	looking	at	the	amount	
of	individual	differences	observed	within	a	given	sector	(i.e.,	the	SD	
measure	Table	1),	and	the	strength	of	the	correlation	between	sec-
tors	(i.e.,	Table	S1).

Our	 results	 provide	 strong	 evidence	 that	 over	 a	 period	 of	
18	years,	there	are	regions	within	the	beluga	summer	range	that	are	
being	used	more	often	by	particular	subsections	of	the	population.	
This	suggests	that	when	estimating	the	impacts	of	localized	stress-
ors	on	this	population,	the	assumption	that	individuals	are	using	the	
Estuary	in	a	similar	way	will	lead	to	misleading	estimates	of	impact	
levels.	Rather,	our	 results	 suggest	 that	 local	 stressors	are	 likely	 to	
impact	certain	portions	of	the	population	more	than	others.	This	un-
equal	distribution	of	impacts	is	likely	to	be	particularly	exacerbated	
in	cases	where	exposure	to	stressors	is	chronic	and	cumulative.	With	
the	multilevel	modeling	approach	introduced	in	this	paper,	it	is	possi-
ble	to	use	capture–	recapture	datasets	to	identify	if,	and	to	what	ex-
tent,	subsections	of	the	population	are	using	specific	areas	(Figures	
3	and	4).	The	results	from	this	approach	can	then	be	used	to	help	
estimate	the	distribution	of	impacts	within	populations	as	a	whole.

A	greater	understanding	of	 the	sex	and	age	segregation	 in	be-
luga	and	this	population	in	particular	would	be	beneficial	as	it	would	
allow	spatial	networks	of	these	subsections	of	the	population	to	be	
estimated,	and	a	better	assessment	of	impacts	experienced	by	these	
subsections	of	the	population.	This	is	crucial	given	that	juveniles	and	
adult	 females	 tend	 to	 show	 less	distinctive	markings	 compared	 to	
adult	males,	making	captures	by	photo	 ID	more	difficult	 for	 these	
age/sex	classes	and	reducing	the	amount	of	 information	they	pro-
vide	when	estimating	spatial	networks	of	the	population	as	a	whole.	
Similarly,	if	the	goal	is	to	better	estimate	the	impacts	of	disturbances	
within	a	particular	time	span,	spatial	networks	can	be	estimated	over	
shorter	time	scales	(i.e.,	other	than	over	18	years	used	in	this	study)	
(e.g.,	Figures	S1	and	S2),	and	can	account	for	the	potential	of	shifts	in	
population	habitat	use	within	years	(e.g.,	Figure	S5).	Both	estimating	
within	 sub-	subsections	 of	 the	 population	 and	 over	more	 targeted	
time	spans	will	require	continued	data	collection.	In	this	regard,	pho-
togrammetric	and	machine	 learning	work	 to	 identify	 sex,	estimate	
age,	and	facilitate	individual	identification	is	currently	underway	to	
refine	already	collected	data	and	facilitate	future	data	collection.

Properly	 accounting	 for	 animal	 movements	 and	 within-	
population	 site	 fidelity	 patterns	 can	 lead	 to	 drastically	 different	
results	about	impacts	of	individual	stressors	or	their	cumulative	ef-
fects.	For	instance,	predictions	from	an	agent-	based	model	of	beluga	

F I G U R E  4 Population	spatial	structure	characterized	by	
similarity	and	dissimilarity	in	user	profiles	between	sectors	in	the	
SLE	beluga	population.	The	green	edges	between	two	sectors	
signify	that	the	sectors	share	high/low	users,	while	red	edges	
signify	that	they	have	opposite	high/low	users.	The	lack	of	an	
edge	signifies	that	the	high/low	users	of	one	sector	do	not	provide	
information	about	the	high/low	users	of	other	sectors.	Nodes	
represent	sectors,	and	are	colored	based	the	cluster	they	belong	
to:	that	is,	shared	green	edges	and	no	shared	red	edges.	Node	sizes	
represent	the	magnitudes	of	individual	differences	in	use	within	the	
sector,	that	is,	larger	nodes	suggest	specialized	use	by	a	subset	of	
the	population
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and	marine	traffic	in	the	STE	found	that	if	beluga	spend	more	time	
within	 the	 Saguenay	 River	 Sector	 they	 likely	 experience	 reduced	
exposure	to	noise	pollution	(Chion	et	al.,	2021).	This	suggests	that	
subsets	of	individuals	within	the	larger	population	that	use	this	sec-
tor	will	have	reduced	noise	exposure.	This	refuge	effect,	however,	is	
predicted	to	be	lost	under	scenarios	where	additional	marine	traffic	
is	added	to	the	Saguenay	River	(Chion	et	al.,	2021).

Finally,	when	implementing	multilevel	binomial	models	on	other	
capture–	recapture	datasets,	the	use	of	test	datasets	should	hold	a	
prominent	 role	 in	 the	 analysis.	 The	use	of	 permutation/simulation	
methods	 to	 both	 generate	 spatially	 structured	 and	 unstructured	
datasets,	while	maintaining	the	sample	size	distribution	of	the	orig-
inal	 datasets,	 can	 be	 very	 valuable	 in	 helping	 to	 set	model	 priors	
and	to	interpret	the	final	model	results.	The	use	of	permutation	ap-
proaches	 is	 common	 in	 social	network	analysis	 (Croft	et	al.,	2011;	
Farine,	2017),	and	similarly,	the	use	of	simulated	datasets	is	becom-
ing	more	common	in	statistical	workflows	more	generally	 (Gelman	
et	al.,	2013;	McElreath,	2020).

5  |  CONCLUSIONS

We	 have	 introduced	 the	 use	 of	multilevel	 binomial	models	 to	 es-
timate	 spatial	 networks	 from	 a	 capture–	recapture	 approach	 that	
is	 gaining	 in	 applicability,	 that	 is,	 photo-	ID	 data.	We	 have	 shown,	
using	test	datasets,	that	the	proposed	method	is	effective	at	detect-
ing	population	spatial	structures	–		quantifying	the	extent	to	which	
subsections	of	 the	population	make	use	of	 specific	 regions	of	 the	
populations	 spatial	 range.	When	 applied	 to	 18	 years	 of	 photo-	ID	
data	from	an	endangered	population	of	beluga	in	the	SLE,	our	results	
provide	evidence	that	the	population	is	composed	of	multiple	spatial	
clusters	of	individuals	with	distinct	habitat-	use	patterns.	We	suggest	
that	the	ability	to	estimate	habitat-	use	patterns	within	animal	popu-
lations	monitored	by	capture–	recapture	sampling	will	contribute	to	
better	impact	assessments	with	direct	implications	for	conservation	
and	management.
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