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Social animals frequently show dynamic social network patterns, the conse-
quences of which are felt at the individual and group level. It is often
difficult, however, to identify what drivers are responsible for changes in
these networks. We suggest that patterns of network synchronization
across multiple social groups can be used to better understand the relative
contributions of extrinsic and intrinsic drivers. When groups are socially sep-
arated, but share similar physical environments, the extent to which network
measures across multiple groups covary (i.e. network synchrony) can
provide an estimate of the relative roles of extrinsic and intrinsic drivers.
As a case example, we use allogrooming data from three adjacent vervet
monkey groups to generate dynamic social networks. We found that net-
work strength was strongly synchronized across the three groups, pointing
to shared extrinsic environmental conditions as the driver. We also found
low to moderate levels of synchrony in network modularity, suggesting
that intrinsic social processes may be more important in driving changes
in subgroup formation in this population. We conclude that patterns of net-
work synchronization can help guide future research in identifying the
proximate mechanisms behind observed social dynamics in animal groups.

1. Introduction
Group-living animals experience repeated interactions with others and can
develop relationships that wax and wane through time [1,2]. This sets up a social
environment that is intrinsically dynamic. The patterning of social interactions
has been shown to correlate with components of fitness [3–6], by mediating, in
part, the risks of predation [7] and infectious disease [8], as well as thermoregula-
tory efficiency [9]. Social network analysis has been used to describe the social
structures that emerge fromsocial behaviours and to locate individuals in the struc-
ture of the larger social group [10–12]. While earlier work generally focused on
static networks, the need to better understand how individuals achieve and regu-
late their network position [13–16] has led to an increase in the attention paid to
dynamic social networks where it’s possible to track temporal shifts [17–19].

Much of the work on dynamic social networks has focused solely on intrin-
sic group processes such as the influence of current social structure on
subsequent social behaviour [20,21]. Similarly, recent work on multilayer net-
works has documented how changes in one network layer may drive
changes in another [22–25]. There is also, however, good evidence to suggest
that factors extrinsic to the group, such as changes in the physical environment
[1,26–29], may also underpin social network dynamics.

Given this, it is surprising that there has been little examination of the relative
influence of—or interaction between—intrinsic and extrinsic factors in the
dynamicsof social network structure (thoughsee [1,30,31]). This is relevantbecause,
without an understanding of whether and how extrinsic and intrinsic factors oper-
atewithin a given context, our analyses are vulnerable tomisinterpretation. That is,
wemaymistake extrinsically driven shifts in network structure, overwhich animals
have little control, for intrinsic shifts that reflect individual strategies or tactics for
improving network position. This in turnmay lead us tomischaracterize themech-
anisms by which social network position gives rise to any fitness-related benefits.
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One way to assess the relative roles of intrinsic and extrin-
sic drivers is to measure patterns of synchronization across
multiple groups that share a physical environment, as has
been done in systems biology and population ecology
[32,33]. Where multiple social groups share the same local
environment, extrinsic environmental factors, such as rainfall,
temperature and general food availability, would—sensu
lato—be held in common by them all. If extrinsic factors,
therefore, are largely responsible for changes to social
dynamics within groups, we would expect changes to net-
work structures to be synchronized across them. That is, the
changes seen in one group would be mirrored by equivalent
changes in another, which we refer to as network synchrony.
Here, network synchrony refers to network measures that
show simultaneous temporal covariation across different
groups. By contrast, if network changes are driven by factors
intrinsic to each group, such as the specificities of the individ-
uals and the combined characteristics of its members, we
would anticipate lower levels of synchrony across groups
on the expectation that intrinsic dynamics would tend to
decouple groups from one other, while also possibly giving
rise to idiosyncratic responses to environmental change.
Such decoupling is likely to be increased where individual
social behaviours not only create the social structures but
are, in turn, influenced by them (i.e. where there are social
feedback loops: [22,34,35]). Measuring network synchrony
across groups thus makes possible an understanding of the
relative roles of intrinsic and extrinsic drivers without any
prior need to specify the specific mechanisms that might be
involved. Once the magnitude of synchrony is known, it
becomes, in principle, easier to then identify and tease
apart the influence of specific contributors, and reveal how
sensitive social organization is to environmental perturbation.

Here, we use 3.5 years of social data on three adjacent
groups of vervet monkeys (Chlorocebus pygerythrus), whose
territories overlap substantially, to estimate the extent of
cross-group synchrony in the social network structure
of female grooming interactions. To do so, we consider
variation within and between groups with respect to two net-
work measures. (i) We first quantify the synchrony in mean
grooming strength across groups (i.e. themean of theweighted
degree of each node in the network). Mean grooming strength
relies on direct network connections and we use this as
our measure of the extent to which individual grooming
behaviours increase or decrease within groups. (ii) We then
quantify the synchrony in grooming modularity across
groups. Modularity relies on indirect network connections
and measures the extent to which the allocation of grooming
generates subgroups within social networks, and how
delineations of subgroups increase or decrease. After generat-
ing time-series data for the two network measures for each
group, we then estimate network synchrony using multi-vari-
ate time-series models to determine inter-group correlations.
Mean grooming strength allows us to test how intrinsic/extrin-
sic factors drive grooming effort; that is, how much time
individuals are spending in close proximity physically groom-
ing others. Grooming modularity allows us to assess how
intrinsic/extrinsic factors drive the allocation of that grooming
effort; that is who is groomingwhom, how frequently and how
this allocation results in distinct subgrouping within the larger
group. Given there are many possible network measures, we
have chosen to focus on grooming strength and modularity
as both are associated in the literature with infectious disease
transmission. Grooming strength, in particular, provides an
estimate of how much time individuals are spending close to
others, while grooming modularity provides an estimate of
group structure that has been associated with transmission
[8,36]. By estimating the relative roles of intrinsic and extrinsic
drivers on these particular network measures, we aim to
develop a better understanding of how social behaviour can
impact infectious disease transmission within social groups
in changing environments.
2. Methods
(a) Study population and network construction
Grooming data were collected using scan samples [37] of all vis-
ible individuals during a 10 min block initiated every 30 min
during each 10 h field day from three groups of vervet monkeys
(see, for example, [38]) as part of a long-term field project in the
semi-arid Karoo ecosystem of South Africa [39]. The three groups
are referred to herein as PT, RBM and RST; the abbreviations
have no relevance beyond being a unique identifier. All field
assistants were trained to visually recognize all adult individuals.
We used data collected from January 2015 to November 2018,
comprising 21 404 observed grooming events between females.
The number of females in each group was PT mean = 12
(95% CI: 8, 17), RBM mean = 15 (95% CI: 7, 22) and RST
mean = 17 (95% CI: 8, 22), and the sex ratio was PT mean = 0.56
(95% CI: 0.45, 0.73), RBM mean = 0.56 (95% CI: 0.46, 0.73) and
RST mean = 0.54 (95% CI: 0.42, 0.58).

We used the package ‘netTS’ [40] in R v. 3.5.2 [41] to
construct grooming networks and extract network measures
as time series for each group. We aggregated networks into
60-day windows, as correlations between the observed and boot-
strapped networks indicated that shorter time scales resulted in
noisy estimates of strength and modularity (electronic sup-
plementary material, figure S1). Each aggregate window was
then shifted by 30-days, resulting in a time series of 45 networks
covering 1260 days (figure 1). To estimate mean network
strength, we used the ‘strength’ function, and for network mod-
ularity, we used the ‘walktrap’ algorithm, in the ‘igraph’ package
in R [42]. As grooming is a directed behaviour, we calculate
strength of a node using both in- and out- edges (i.e. the sum
of the two). Similarly, the walktrap algorithm uses the sum of
in- and out- edges between two nodes when detecting commu-
nity membership to calculate network modularity. To aid in
interpretation, networks showing high/low mean grooming
strength and high/low grooming modularity are provided in
the electronic supplementary material, figure S2.

(b) Study design
By using a study design that looks at network synchronization
across multiple social groups that share similar physical environ-
ments, we aim to estimate the extent to which network changes
can be attributed to extrinsic drivers. However, there are other
variables that might inflate network synchronization. Under con-
ditions where individuals from one network can be assumed not
to interact with individuals in another network, the observed
dynamics of each network can be considered separately. This
greatly facilitates the distinction between potential extrinsic and
intrinsic drivers of network dynamics. In field settings where
the assumption of complete separation is not always possible,
it is important to recognize that interactions between groups
could increase the observed synchronization between networks.
That is, there are shared events that may affect more than one
group simultaneously as a consequence of non-environmental
factors (e.g. territorial disputes between groups). In our study
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Figure 1. Time series of network measures for three vervet monkey groups: (a,b) PT, (c,d ) RBM and (e,f ) RST. The date marks the start of a 60-day window that was
used to construct a grooming network. For each network, (a,c,e) grooming modularity and (b,d,f ) mean grooming strength were calculated. (Online version in colour.)
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system, we focused on female grooming networks, which are
directed to others only within the same group, which mitigates
the potential inflation in synchrony of any interactions across
groups. Females do, however, interact across groups during
aggressive inter-group encounters. These aggressive interactions
between groups, and the subsequent within-group grooming
that occurs afterwards, are a potential driver of network syn-
chrony between two groups. Similarly, as males often disperse
from one neighbouring group to another [43], it is possible that
periods of high male dispersal might drive synchrony in
female grooming patterns across groups as each deals with an
influx of new male members. Finally, as vervets are seasonal
breeders, network synchronization across groups could also be
a result of grooming patterns due to shared influx of new
female members as infants from a given yearly cohort mature
into the adult network. Consequently, we use a multi-variate
approach to account for these potential drivers of between-
group patterns with the aim of estimating the remaining network
synchrony that is due to extrinsic drivers.

As an initial step in measuring synchrony between social net-
work measures of groups, we constructed a directed acyclic
graph to outline our assumed causal structure of how network
synchrony is generated between any two groups [44,45]. Our
measured variables are the social network measures from each
group, shared events we’d like to account for (e.g. inter-troop
encounters (ITEs)), as well as information about the sampling
effort used to generate these data. Following from the introduc-
tion, we assume that, beyond sampling effort and shared
events, network measures are influenced by intrinsic social be-
haviour within a group, as well as extrinsic environmental
factors (figure 2). In the case of extrinsic environmental factors,
we assume that they influence network measures both directly
and indirectly through intrinsic social behaviour (figure 2).
This assumed causal structure represents our hypothesis for
how network synchronization emerges. Following from this
hypothesized causal structure, our predictions are that the
increased influence of extrinsic environmental drivers as well
as shared events will increase network synchronization between
groups, while the increased influence of intrinsic social behav-
iour within a group will decrease network synchronization.

Following Young et al.’s [46] findings that the probability of
performing social behaviours, such as grooming, was influenced
by food availability in this population, we predict (i) that mean
grooming strength will show synchrony across groups, because
this is at least partially driven by this extrinsic factor. By contrast,
we expect (ii) that grooming modularity will show no synchrony
across groups, as it is likely to be less sensitive to extrinsic
environmental conditions and more sensitive to intrinsic social
history and characteristics of a group. This is because, as a
measure that is reliant on the distribution and strengths of all
dyadic relationships in the group, grooming modularity is
highly dependent on the particulars of who is currently groom-
ing whom. Therefore, if past dyadic interactions influence
future dyadic interactions, we expect changes in grooming mod-
ularity to be dependent principally on the specific history of
dyadic relationships within a social group.

(c) Statistical methods
Given that sampling effort can influence network measures, any
increase or decrease in sampling effort shared by groups could
artificially inflate synchrony across groups (figure 2). Shared
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Figure 2. Causal diagram of network synchrony between two social groups.
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events between groups (such as ITEs) or events experienced by
all groups (male migration, group size changes due to seasonal
breeding) could similarly result in increased synchronization
between groups. To measure the synchrony due to extrinsic dri-
vers alone, we therefore constructed a model that accounts for
sampling effort, number of ITEs, number of males within the
group and group size. By accounting for these variables, we
are able to estimate the covariance of the remaining unexplained
variance. This covariance estimation is our target measure of syn-
chronization between the groups. To accomplish this, we
specified a multi-variate Student’s t distribution where the
scaled and centred network measures from each social group
were used as the response variables. To model the mean of
each response, we estimated an intercept and the effect of
sampling effort, ITEs, male migrations and group size on net-
work measures. Using this multi-variate student-t distribution,
we could then estimate the covariance between the errors, as fol-
lows:

V1,t
V2,t
V3,t

0
@

1
A ¼ MVStudentT

m1,t
m2,t
m3,t

, S

0
@

1
A Likelihood

m1,t
m2,t
m3,t

¼
a1 þ b1 � effort1,t þ b2 � ITEþ b3 �malesþ b4 � sizeþ gp (date)
a2 þ b2 � effort2,t þ b2 � ITEþ b3 �malesþ b4 � sizeþ gp (date)
a3 þ b3 � effort3,t þ b2 � ITEþ b3 �malesþ b4 � sizeþ gp (date)

Mean

S ¼
s1,1 s1,2 s1,3

s2,1 s2,2 s2,3

s3,1 s3,2 s3,3

2
4

3
5 Covariance

where V1,t is the network measure of group 1 at time t, m1,t is the
estimated mean of group 1 at time t and S is the covariance
matrix. Each estimated mean (m1,t) is a function of the overall
group mean (a1), the sampling effort and a Gaussian process
that accounts for the autocorrelation in network measures
through time (gp(date)). The covariance term s1,2 is the covari-
ance between network measures in group 1 and 2, and is equal
to the covariance s2,1 (i.e. covariance between groups 2 and 1).
We then used these covariance estimates to calculate correlations
(r) between the group network measures, and these correlations
were used as our measure of synchrony between groups. To run
the model, we used ‘brms’ [47] and provide the code in electronic
supplementary material, §2.

Having measured the magnitude of synchrony using the
models above, we then performed a second set of analyses in
which we added extrinsic variables that potentially could gener-
ate synchrony in social network dynamics. If the addition of
these variables explains some portion of the variation in network
measures across groups, it will alter the estimated synchrony
between social networks by changing the remaining error and
the covariance between the errors. Specifically, if we find a
reduction in synchrony when an extrinsic variable is added, it
suggests that this variable is responsible for similar changes in
each social network and will account for the correlation found
in the errors (e.g. if the mean grooming strength of both group
A and B consistently goes up in response to the added variable).
If, on the other hand, we find that the addition of the extrinsic
variable increases the estimated synchrony between the net-
works, it suggests that the variable is responsible for dissimilar
changes in each social network and will account for unsynchro-
nized patterns in the errors (e.g. the mean grooming strength of
group A consistently responds to this variable by going up, while
group B does not respond to this variable). This approach there-
fore allows us, where network synchrony is detected, to identify
its potential drivers.

To monitor shifts in synchrony, we added variables one at a
time, starting with day of year, followed by the normalized
difference vegetation index (NDVI). This allowed us to first esti-
mate synchrony due to the effect of season, followed by the effect
of NDVI, an estimate of food availability that is also influenced
by season (see [46] for more details). For season, we specified a
cyclic cubic regression spline to allow for nonlinear effects. To
visualize the model outcomes, we use marginal mean plots to
show how each group is predicted to respond to changes in
each environmental variable.

To ensure the proposed modelling approach can accurately
estimate network synchrony, we simulated grooming data
where we could control the source and amount of synchroniza-
tion between two groups. Using these simulated data, we ran
our proposed method to assess whether, with our sample size
and modelling approach, we could accurately estimate syn-
chrony while accounting for different causes of synchrony (e.g.
accounting for variation in sampling effort, and due to food
availability). We confirm that we could do so and present these
simulated tests of our proposed model in the electronic
supplementary material, §3).
3. Results
We found that groups exhibited high synchrony in mean
grooming strength, with an estimated correlation between
the groups of rPT,RBM = 0.68, rPT,RST = 0.55 and rRBM,RST =
0.65 (figure 3a and table 1). This implied that extrinsic factors
are important drivers of changes to mean grooming strength.
When testing for specific extrinsic drivers, we found that
after accounting for season and food availability (NDVI),
estimates of correlation did not decrease, but rather
increased or remained the same: rPT,RBM = 0.68, rPT,RST = 0.73
and rRBM,RST = 0.72 (figure 3a and table 1). To identify the
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causes of the observed increase/decrease in synchrony, we
examined the estimated group response to the environmental
variables tested. We found that NDVI had differing impacts
on mean grooming strength depending on the group, with
groups either increasing or decreasing grooming in response
to increasing NDVI (figure 4a). This explains the increased
correlation in the errors when NDVI was accounted for in
these models, whereas we found little variation in a seasonal
response for mean grooming strength (figure 4b).

For grooming modularity, we found that groups exhibited
low to moderate estimates of synchrony: rPT,RBM = 0.58,
rPT,RST = 0.16 and rRBM,RST = 0.41 (figure 3b and table 1).
This indicated a more variable influence of extrinsic factors
on network modularity. When testing for specific extrinsic
drivers, we found a consistent drop in correlation when
season and NDVI were included: rPT,RBM = 0.40, rPT,RST =
0.05 and rRBM,RST = 0.38 (figure 3 and table 1). To identify
the causes of the observed decrease in synchrony, we exam-
ined the estimated group response to the environmental
variables tested. We found that NDVI had differing impacts
on grooming modularity, where increased NDVI was associ-
ated with decreased modularity in two groups but had
relatively little impact on the third (figure 4c). This explains
the increased correlation in the errors when NDVI was
accounted for in these models. Conversely, we found very
similar seasonal responses across all three groups for network
modularity (figure 4d ), which explains the decreased corre-
lation in the errors when season was accounted for in the
grooming modularity model.
4. Discussion
In quantifying the social network dynamics of three vervet
groups that share similar physical environments, we ident-
ified high synchrony in mean grooming strength, and lower
synchrony in how that grooming behaviour generated
distinct subgroups within the groups (i.e. grooming
modularity). This supports the argument that extrinsic and
intrinsic factors play different roles in driving observed
changes in these social network measures.

The high level of synchrony in mean grooming strength
(ravg = 0.63) within these groups suggests that observed
changes were driven primarily by extrinsic drivers
(figure 3a). In attempting to identify the particular extrinsic
drivers that were responsible, we found that accounting for
season and NDVI did not explain the estimated synchroniza-
tion, which stayed the same or increased (ravg = 0.71),
suggesting that these factors were therefore unlikely to be
the primary cause of grooming synchrony across these three
groups. Interestingly, the increase in synchrony of mean
grooming strength, once NDVI was accounted for, was a con-
sequence of groups responding to NDVI, although not in the
same way (figure 3a). This indicates that differences in intrin-
sic variables within each group (e.g. specific characteristics of
individuals and specific social histories) are likely to under-
pin the response to NDVI. Our results also showed a
relatively limited role of season on mean grooming strength
(figure 3b), indicating that physical environmental variables,
such as temperature or daylight, are unlikely to be driving
this observed synchronization between the groups. Our
results therefore do not identify a potential driver for this
level of synchronization across the groups. One explanation
might be that extreme weather events such as short heavy
rainfalls, windstorms or short periods of extreme heat/cold
might be driving changes in mean grooming strength
across all three groups. The distribution of these extreme
weather events might not show a strong seasonal pattern
and could explain why accounting for season using day-of-
year did not reduce the estimated synchronization. This
explanation, however, is only speculation and would need
to be tested more formally in future work.

By contrast (figure 3b), we found relatively lower esti-
mates of synchronization across groups for grooming
modularity (ravg = 0.38). That is, while the dynamics of
mean grooming strength were highly synchronized across



Table 1. Model estimates of synchrony (r) between social network measure of three groups, along with their lower and upper 95% credible intervals in
brackets. The mean synchrony from the three group pairings (ravg) is also presented to aid interpretation. Estimates of synchrony are provided for the model
where sampling effort and shared events are accounted for (i.e. any remaining synchronization is likely to be due to extrinsic drivers). Synchrony estimates are
also provided when accounting for season, and accounting for both season and NDVI (i.e. any remaining synchrony is likely to be due to other unidentified
extrinsic drivers).

synchrony model rPT,RBM rPT,RST rRBM,RST ravg

mean grooming strength

extrinsic drivers 0.68 (0.41,0.86) 0.55 (0.21,0.82) 0.65 (0.37,0.85) 0.63

accounting for season 0.68 (0.39,0.86) 0.61 (0.18,0.89) 0.63 (0.32,0.83) 0.64

accounting for season and NDVI 0.68 (0.42,0.86) 0.73 (0.46,0.89) 0.72 (0.47,0.88) 0.71

grooming modularity

extrinsic drivers 0.58 (0.32,0.78) 0.16 (−0.24,0.50) 0.41 (0.06,0.68) 0.38

accounting for season 0.40 (0.06,0.68) −0.20 (−0.54,0.19) 0.17 (−0.18,0.52) 0.12

accounting for season and NDVI 0.40 (0.05,0.66) 0.05 (−0.32,0.41) 0.38 (0.01,0.66) 0.28
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groups, there was less synchrony in the kinds of social struc-
ture generated by this grooming behaviour. Contrary
to prediction, however, there was a moderate amount of
variability in synchronization, with the highest synchroniza-
tion in grooming modularity between the RBM-PT groups
(rPT,RBM = 0.63) and greatly reduced synchronization in their
pairings with RST group (rRBM,RST = 0.36 and rPT,RST = 0.08).
Given we have only estimated synchrony across three
groups (i.e. n = 3), this limits our ability to quantify this vari-
ation. Nevertheless, the three pairings showed a similar
decrease in synchronization (figure 3b) once the season was
accounted for (ravg = 0.12), identifying this as a likely extrinsic
driver of modularity dynamics. Grooming modularity
reached its maximum values around day 180 (approx.
June/July) in all groups (figure 4d ), which falls near the
end of the typical mating season in this population [48],
and points to this as an important contributor to seasonal
modularity dynamics. We also found that, when accounting
for NDVI in the model, synchronization either remained the
same or increased (ravg = 0.28), again confirming that while
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groups were responding to NDVI, their responses were
different. More specifically, NDVI had a negative impact on
grooming modularity in two of the groups (RBM and PT),
but little impact in RST (figure 4c). Once again, it is likely
that the intrinsic characteristics of each group affect how
grooming modularity changes with NDVI.

These results indicate that mean grooming strength is
likely to be driven by extrinsic factors, although we cannot
yet identify what these are. By contrast, beyond the influence
of season, our results indicate that extrinsic factors are less
likely to be driving grooming modularity. These results also
point to an important distinction to be noted when interpret-
ing the relative roles of extrinsic and intrinsic drivers from the
estimated level of synchrony. That is, if synchrony is esti-
mated to be 0.36, as for grooming modularity between
RBM and RST, it is possible to conclude that extrinsic factors
are responsible for at least 36% of the observed changes in
modularity. Similarly, we can only conclude that intrinsic fac-
tors are responsible for less than the remaining 64%. This is
due to potential interactions between intrinsic and extrinsic
factors in the remaining variation, such as how the RBM
group showed a decline in modularity with changes in
NDVI, while RST did not. Highly synchronous patterns
across social groups can therefore be used to identify extrinsic
environmental factors as the primary drivers. Low synchrony
outcomes, on the other hand, point only to either intrinsic, or
intrinsic–extrinsic interactions as potential drivers.

Our results for mean grooming strength and grooming
modularity were extracted using a single aggregation time
scale of 60 days. However, these patterns might well
change depending on the time scale chosen. Rather than
identifying an optimal time scale for aggregation, it is poss-
ible that the way in which synchronization changes
dependent on time scale will provide more insights [49].
For example, given the immediate consequences of social
interactions within groups and the prolonged influence of
the physical environment, one prediction might be that
intrinsic factors might play more of a role at shorter time
scales (low synchrony), and that extrinsic factors play more
of a role (high synchrony) as time scales are increased. By esti-
mating the magnitude of synchrony at multiple time scales,
changes in synchrony could be compared across a range of
species to gain insight into the speed at which environmental
changes impact social structures.

The ability to apply the proposed network synchrony
approach to distinguish between extrinsic and intrinsic
drivers of social dynamics in other species/context will
depend on the ability to have multiple social groups that
share physical environmental conditions yet have distinctly
separable social networks. In our case, female philopatry
made this possible, while nevertheless requiring the
measurement of other sources of potential interactions
between groups (e.g. number of ITEs and number of males
in the group). Other species and landscape contexts, however,
as well as captive or laboratory settings, might well provide
useful opportunities to study more or less separable social
systems, similar to studying population dynamics of goats
on two nearby but separate islands [32].

From an epidemiological perspective, the ability to pre-
dict how social species will respond to environmental
changes could facilitate better predictions of infectious dis-
ease spread. For our study population, our results suggest
that extrinsic factors are a likely driver of the observed
dynamics in the magnitude of host contact (mean grooming
strength), while playing a smaller role influencing host
social structures on which infectious diseases are transmitted
(grooming modularity). By focusing on mean grooming
strength and grooming modularity, it is possible to better
understand the intrinsic/extrinsic drivers of a social network
structure that are often linked to infectious disease trans-
mission [8,36] and, thereby, provide insight into potential
links between climate, social structure and infectious disease.

More generally, we suggest that focusing on intrinsic or
extrinsic drivers separately can provide a misleading under-
standing of social network dynamics. Rather, to better
understand their relative roles and interactions, patterns of
synchronization in social network dynamics can identify
and help guide future research in identifying, proximate
mechanisms behind observed dynamics in social animal
groups. Similarly, by using patterns of network synchroniza-
tion to estimate the impacts of extrinsic drivers, it is possible
to identify social species that might be more sensitive to
landscape or climate changes.
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