
Vol.:(0123456789)

https://doi.org/10.1007/s00265-023-03300-2

ORIGINAL ARTICLE

Network reaction norms: taking account of network position 
and plasticity in response to environmental change

Tyler R. Bonnell1,2   · Chloé Vilette1,2 · S. Peter Henzi1,2 · Louise Barrett1,2

Received: 6 October 2022 / Revised: 2 February 2023 / Accepted: 6 February 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract 
Consistent inter-individual differences in behaviour are thought to be related to consistency in social network position. 
There is also evidence that network structures can show predictable temporal dynamics, suggesting that consistency in 
social network position across time does not preclude some form of plasticity in response to environmental variation. To 
better consider variation in network position and plasticity simultaneously, we investigate the extension of the behavioural 
reaction norm (BRN) to dynamic social networks. Our aim is to estimate both an individual’s position and plasticity within 
a network across an environmental gradient (i.e. to generate a network reaction norm (NRN)). We show that it is possible to 
account for the non-independence of network measures using covariance structures but that, in cases where the independent 
variables are group-level environmental measures, a standard multilevel model is sufficient. We therefore outline when a 
standard multilevel model is appropriate for NRNs and highlight the benefits and limitations to this approach. As an illustra-
tive example, we used an NRN approach on 7 years of behavioural data on chacma baboons to quantify both the consistency 
with which individuals maintained social behaviour (node strength) and central positions (eigenvector centrality) within the 
social network. We found evidence for individual plasticity for node strength but little evidence for eigenvector centrality. 
Conversely, we found evidence of consistent individual differences in eigenvector centrality but not strength. These results 
suggest that individual node strengths are influenced by environmental changes, but the social structure of the group remains 
remarkably stable nevertheless. We suggest that expanding from measures of repeatability in social networks to network reac-
tion norms will provide a more contextually nuanced way to investigate social phenotypes, leading to a better understanding 
of the development and maintenance of social structures in changing environments.

Significance statement
An individual’s position within a social network can have consequences for its fitness, resulting in great interest into how 
individuals develop and maintain particular network positions. Here, we extend the notion of behavioural reaction norms to 
include social network data. Given the non-independence of network data, however, the application of BRNs is not straight-
forward. Consequently, we have developed an alternative statistical extension that uses covariance structures to account for 
non-independence. Although we find that under one specific set of assumptions, it is possible to apply the standard BRN to 
network data. Applying this approach to data from a social group of chacma baboons, we found individual social behaviours 
shifted in response to environmental variables, yet the social structure of the group remained remarkably stable.

Keywords  Dynamic social networks · Behavioural reaction norm · Network plasticity · Repeatability · Chacma baboon

Introduction

Consistent inter-individual differences in behaviour are com-
mon in animal groups (Sih et al. 2004; Dall et al. 2012). 
How such behavioural differences develop, are maintained, 
and selected form the focus of current research efforts, as do 
questions relating to the ecological and evolutionary con-
sequences of such inter-individual differences (Wolf and 

Communicated by D. Paul Croft

 *	 Tyler R. Bonnell 
	 tyler.bonnell@gmail.com

1	 Department of Psychology, University of Lethbridge, 
Lethbridge, Alberta, Canada

2	 Applied Behavioural Ecology and Ecosystems Research Unit, 
University of South Africa, Pretoria, South Africa

/ Published online: 15 March 2023

Behavioral Ecology and Sociobiology (2023) 77:35

http://crossmark.crossref.org/dialog/?doi=10.1007/s00265-023-03300-2&domain=pdf
http://orcid.org/0000-0001-6041-5177


Weissing 2012; Bierbach et al. 2017; Jolles et al. 2020). 
There is also great interest in the extent to which animals 
are able to vary their behaviour in response to environmental 
changes, and whether and how this behavioural plasticity 
covaries with inter-individual differences in mean behav-
ioural rates. These behavioural patterns are captured by the 
notion of a “behavioural reaction norm” (BRN)—the set of 
behavioural phenotypes an individual produces in a given set 
of environments—a concept drawn from life history theory 
(Dingemanse et al. 2010; Westneat et al. 2015).

Within social groups, patterns of inter-individual con-
sistency have also been observed in social network position 
(e.g. central individuals remain central across time) (Brent 
et al. 2013; Aplin et al. 2015; Formica et al. 2017; Krause 
et al. 2017; Blaszczyk 2018; O’Brien et al. 2018). It is an 
open question as to how these differences arise and are main-
tained (Firth et al. 2017). There is also evidence to suggest 
that consistent inter-individual differences in behaviour and 
social network position covary (Croft et al. 2009; Aplin et al. 
2013). For social animals, this implies that network posi-
tion reflects certain behavioural predispositions, and/or that 
certain behavioural predispositions may arise in response to 
occupying a particular network position.

At the same time, there are data showing that the net-
work structure itself exhibits strong temporal dynamics. 
Furthermore, temporal consistency in social network posi-
tion does not preclude some form of plasticity in response 
to environmental variation, such that network position and 
plasticity may covary in interesting ways (Henzi et al. 2009). 
Such covariation could provide insight into the possible 
constraints or opportunities faced by group-living individu-
als. For example, we might find covariation if individuals 
occupying more central positions in the network are better 
(or less) able to cope with environmental changes in ways 
that are not available to others. Examining the covariation 
between node position and plasticity may act as a guide to 
the discovery of the mechanisms that produce social network 
structures, as well as their functional consequences.

Currently, repeatability measures are used to quantify 
the variation in individual network positions through 
time (Wilson et al. 2013; Jacoby et al. 2014; Aplin et al. 
2015; Formica et  al. 2017; O’Brien et  al. 2018), for 
example, do some individuals consistently have low/high 
node eigenvector centrality values. In statistical terms, 
the measure of repeatability estimates the proportion of 
variation that can be attributed to between-subject variation 
(Nakagawa and Schielzeth 2010). If individuals have 
consistently different network positions, this measure will 
be high, whereas if individuals hold similar positions, or 
swap positions frequently, then the measure of repeatability 
will be low. Quantifying the pattern of repeatability in social 
networks has allowed for useful comparisons between and 
within social groups and has also been useful in testing 

and identifying potential processes that underlie observed 
social dynamics (Firth et al. 2017). We suggest that we can 
build on the insights gained from studies of repeatability 
(i.e. consistent inter-individual differences) by extending 
our investigations to consider node plasticity across different 
environmental conditions (O’Brien et al. 2018). Within the 
behavioural ecology literature it has been productive, and 
in some cases essential, to consider both inter-individual 
differences in mean behavioural traits and individual 
differences in behavioural plasticity (Westneat et al. 2011, 
2015; Dingemanse and Wolf 2013). We suggest that 
considering both network position and plasticity of nodes 
will be similarly useful for quantifying patterns of dynamic 
social networks.

We therefore consider whether a behavioural reaction 
norm approach (Dingemanse et al. 2010) can be used to 
model inter- and within-individual changes in social net-
work position—a “network reaction norm” (NRN)—and use 
this to quantify individual variation in social phenotypes. 
As the applications of reaction norms to social networks 
raise some interesting analytical and conceptual challenges 
(specifically, the non-independence of nodes), we also apply 
this approach to a simulated dataset to determine what it can 
and cannot achieve. We then apply the NRN framework to a 
network of wild baboons as a proof-of-concept and address 
the question of whether individuals maintain similar network 
positions in response to changes in both rainfall and solar 
radiation.

Methods

Network reaction norm

Behavioural reaction norms are calculated using a multi-
level modelling approach where, for each individual, group-
ing terms are used to calculate both their deviation from the 
overall mean behaviour (random intercept) and the change 
seen in behaviour in response to a change in the environ-
ment (i.e. random slope). With network data, however, as 
node measures within a network are not independent (i.e. 
the value of a network measure for one node is intrinsically 
linked to the values of network measures of other nodes 
in the network), this limits the ability to use routine BRN 
models. The non-independence of network data can bias 
estimates from a statistical model, such as a BRN, as well 
as the uncertainty around these estimates (Croft et al. 2011; 
Farine 2017). We can, however, build on the BRN approach 
to account for the non-independence of nodes by using a 
multivariate multilevel normal distribution (MVN).

yi,t ∼ MVN
(
�i,t,Σ

)
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where yi,t is the node measure for the ith node at time t, �i,t 
is the mean for node i at time t, and Σ is a covariance matrix 
describing the dependence between nodes:

Here, p1,2 , for example, is the covariance in the errors 
between nodes 1 and 2, and n is the total number of nodes. 
If the node measures in NRNs are repeated measures of indi-
vidual nodes across different environments over time (i.e. 
over an environmental gradient), it is then possible to intro-
duce node intercepts and slopes following the traditional 
multilevel model structure used in BRN approaches:

where a is the mean intercept shared across all nodes, ai is 
the deviation of the ith node from the mean intercept, and b 
is the mean slope shared across all nodes, with bi being the 
deviation of the ith node from the mean slope, and xt is an 
environmental measure at time t. Using this approach, an 
NRN can be seen as a multivariate approach to a traditional 
BRN.

Avoiding statistical confounding in NRNs

The use of a multivariate distribution in the NRN approach 
allows us to account for covariance structures in node meas-
ures. That is, a covariance structure captures the dependen-
cies between node measures (e.g. how some nodes might 
increase in eigenvector centrality resulting in other nodes 
decreasing in eigenvector centrality). However, there 
remains the potential for statistical confounding when 
predictor variables also have covariance structures (i.e. 
another network measure) or are influenced by the covari-
ance structure of the outcome variable (e.g. individual-level 
phenotypes).

To give an example, problems of statistical confound-
ing would likely arise if we wanted to know if body size 
predicts the number of unique partners (represented by the 
network centrality measure degree). In this example, we 
know that degree is a network measure and that it will have 
some covariance structure. In this system, it might also be a 
reasonable assumption that network position might influence 
the body size of individuals. As a result, both degree and 
body size are likely influenced by the same network covari-
ance. If not accounted for, this can lead to statistical con-
founding, where an estimate of body size on degree might 
be misleading if the covariance structure of the network is 
not taken into account (Krackhardt 1988).

When building a statistical model with a response and 
predictor variable that potentially share similar covariance 

Σ =

⎛⎜⎜⎝

p1,1 ⋯ p1,n
⋮ ⋱ ⋮

pn,1 ⋯ pn,n

⎞
⎟⎟⎠

�i,t = a + ai + (b + bi) ∗ xt

patterns, permutation approaches have been suggested as a 
means of breaking this shared covariance (Krackhardt 1988; 
Weiss et al. 2021; Farine and Carter 2022). However, the use 
of permutations with regression models can lead to undesir-
able statistical properties (Weiss et al. 2021). Crucially, in 
cases where the predictor variable is an environmental meas-
ure that is the same for all nodes in a social network (e.g. 
rainfall), there is no associated covariance structure, and so 
there is no need for permutations. We provide a graphical 
approach (Pearl and Mackenzie 2018) to help visualise when 
an NRN can and cannot be applied with non-environmental 
measures (Fig. 1). In the rest of the paper, we focus on NRNs 
where the independent variable is a physical environmental 
variable that can safely be assumed not to have any shared 
covariance with node measures.

Case 1: If the network structure of a group influences the 
predictor variable x, then x cannot be included in an NRN 
due to potential statistical confounding (Fig. 1a). In our 
study presented here, as x is a measure of an environmental 
variable that influences the entire group, such as rainfall, 
or temperature, the social structure of a group is unlikely 
to impact these large-scale environmental measures. Case 
2: If a third variable influences both the network structure 
and the predictor variable x, then x cannot be included in an 
NRN unless the third variable can be included in the model 
as well, e.g. if rainfall influences both network structure 
and humidity, then rainfall would need to be included in the 
NRN to get an unbiased estimate of humidity on network 
structure (Fig. 1b). Case 3: If the reverse is true, that both 
network structure and the independent variable x influences 
some third variable, an NRN can be run as long as that third 
variable is not included (Fig. 1c). This is another case that 
is unlikely to occur with NRNs as social structures would 
be required to influence large-scale environmental measures. 
Case 4: Finally, if the independent variable x influences 
network structure, but cannot be influenced by the network 
structure (Fig. 1d), then it is possible to estimate the total 
effect of the independent variable x on an individual’s net-
work measure. This last assumption can be safely assumed 
with many large-scale environmental measures, such as tem-
perature, rainfall, or solar radiation.

Simulation data

To better understand the limits and opportunities of using a 
reaction norm approach with social network measures, we 
make use of a simple social network simulation to gener-
ate some test data. We present a social context where there 
are two clusters of individuals connected by a single dyadic 
relationship (Fig. 2). Furthermore, this between-cluster rela-
tionship is made dependent on food availability, where the 
relationship increases with increased food availability. We 
then vary food availability and measure an indirect network 
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measure—node eigenvector centrality (i.e. one where the 
individual’s measure is dependent on all other individuals 
within the network)—and a direct network measure—node 
strength (i.e. where individual measures are only dependent 
on neighbouring nodes). A simplistic simulation of two clus-
ters connected by one edge was chosen to offer a clear case 
of the benefits and limits of the NRN approach and how it 
can be used and interpreted under more realistic conditions.

Observed data

To investigate how social network structure changes with 
varying environmental conditions in a wild population, we 
used proximity data collected between June 1997 and Octo-
ber 2006 from all adult females of a troop of baboons in the 
De Hoop Nature Reserve, South Africa (Barrett et al. 2002; 

Henzi et al. 2009). Data were collected by scan sampling 
every 30 min, during which the identities of all animals 
within 10 m of the target individual were recorded (hereafter 
nearest neighbours) for a total of 25,806 nearest neighbour 
events across the study period. The final dataset consisted 
of 30 females, where the median number of females at any 
given time was 12 (min = 9, max = 16) over the entire study 
period. It was not possible to record data blind because our 
study involved focal animals in the field.

To gain an understanding of how social network structures 
vary with changing environments, we generated a sequence 
of time-aggregated networks. To accomplish this, we make 
use of a moving window design, where a window of a fixed 
duration shifts by a set amount of time, generating a time 
series of networks (Bonnell and Vilette 2021). In selecting 
the temporal scale, we used a window size of 3 months, and 
a shift of 3 months, to avoid window overlap. We chose this 
3-month time scale given the results from using a bootstrap-
ping and subsampling approach to identify the lower limit 
to possible time scale choices. These results suggested that 
below 1 month, our network measures showed high sensi-
tivity to the bootstrapped sample; hence, > 30-day windows 
would be required. Similarly, we varied window size to look 
for natural scales (Caceres et al. 2011). When we measured 
the amount of structure in the resulting time series, the results 
suggested that the 3-month window size represented a tran-
sition from highly noisy time series to more structured time 
series. Both of these methods are discussed in greater detail 
in Bonnell and Vilette (2021), and the results are presented 

Fig. 1   Outlining different cases 
where the NRN (network reac-
tion norm) approach can/cannot 
be run without the presence of 
statistical confounding. In each 
case, a different assumption of 
the relationship between the 
independent variable x (e.g. 
rainfall), dependent network 
measure y (e.g. node strength), 
and the social structure of a 
social group is made: a social 
structure influences the inde-
pendent variable x, b a third 
variable z influences both the 
social structure as well as x, c 
a third variable z is influenced 
both by x and social structure, 
and d x influences the social 
structure. The ability to fit an 
NRN is highlighted in green 
with a checkmark, and in the 
case where it cannot, in red with 
an x-mark

Fig. 2   Two cluster network used to simulate data for a test case of the 
network reaction norm approach. The grey edges are fixed, while the 
red dashed edge is made dependent on the availability of food

35   Page 4 of 11 Behavioral Ecology and Sociobiology (2023) 77:35



in the supplementary material (Fig. S2, S3, S4). The chosen 
time scale of 3-month windows resulted in a mean observa-
tion time within windows of 178 h.

To ensure that the network measures were robust through-
out the duration of the study, we excluded networks con-
structed using fewer than 50 h of data collection, and where 
the lower 95% credible interval of the cosine similarity 
between the observed network measures and network meas-
ures generated from bootstrapped samples was below 0.90.

Using this time series of networks, we extracted individual 
measures of strength and eigenvector centrality (EC) (New-
man 2018), producing a time series of network measures for 
each individual. Individual node strength represents the num-
ber of times an individual was found within 10 m of another 
individual, whereas EC assesses the centrality of each node 
based on their direct and indirect connections to others. So, 
for example, in a fully connected network, all nodes receive 
equal centrality scores, whereas at the other extreme, a net-
work where all dyadic ties involve one particular individual 
(e.g. a star network) will result in this individual receiving the 
highest centrality score. More generally, the use of central-
ity measures that take into account indirect connections has 
proven useful in better understanding the fitness and herit-
able nature of network positions within social groups (Brent 
et al. 2013; Brent 2015; Wice and Saltz 2021). Finally, we 
removed individual measures of strength and EC that extrapo-
lated beyond the range where individuals were observed, e.g. 
if individual A had an eigenvector measure of 0.2 for the win-
dow covering days 0–100, but was first observed on day 50, 
and died on day 200, this measure was removed.

A more detailed walkthrough of the steps taken with the 
observed data is available with the code and data provided online 
(https://​github.​com/​tbonne/​NRN), as well as in the supplemen-
tary sections (Supplementary material, workflow example).

Quantifying the changing physical environment

To estimate how individuals responded to environmen-
tal changes, we used two ecological variables. We used 
mean incoming solar radiation over each time window, 
measured as Watts/m2, as an environmental effect with the 
potential for impact on thermoregulatory behaviour (Sevi 
et al. 2001; Amat and Masero 2004; Tucker et al. 2008). 
Estimates of surface solar radiation for our study site and 
study period were acquired from the Heliosat dataset, which 
uses the Heliosat algorithm and geostationary satellites to 
estimate solar surface irradiance at a spatial resolution of 
0.05° × 0.05° (Müller et al. 2015). We used mean rainfall 
within each window as an index of the amount of avail-
able food at the site (Barrett et al. 2006; McFarland et al. 
2014). These two environmental measures showed a low 
but uncertain correlation (r =  − 0.11; 95% credible interval 
(CI): − 0.43, 0.23).

Statistical analysis

Using the simulated data, we fit an NRN to both strength 
and eigenvector centrality (Table S1). Crucially, as the use 
of covariance structure with Gaussian multivariate models 
results in analytical difficulties when datasets contain missing 
data, or nodes enter/leave the network, we also use the simu-
lated data to highlight the implications of using NRNs with-
out covariance structures. To do so, we first test the approach 
of running multiple univariate models that use a multilevel 
modelling approach to pool information across models to 
estimate intercepts and slopes within each model (Table S2). 
We then test the approach of running a standard multilevel 
model (i.e. random intercept-slope model), with the inclusion 
of a random intercept for the standard deviation using ID as 
the grouping term (Table S3). The standard multilevel model 
approach has the advantage that it can be easily run in R using 
the brms package, e.g. bf(node_strength ~ food + (1 + food|no
deID), sigma ~ 1 + (1|nodeID), family = gaussian) (see supp. 
workflow example). We then compare these two approaches to 
the slopes and intercepts estimated in the Gaussian multivari-
ate multilevel model, comparing both the mean and standard 
deviation of the estimates.

Given the results of the simulation, we then fit NRNs 
using the standard multilevel modelling approach on the 
observed dataset for both strength and eigenvector centrality 
measures. For strength, we modelled the rate of observed 
spatial proximity events by dividing the observed count by 
the amount of observation time. To account for potential 
sampling bias, e.g. the possibility that some individuals 
were sampled only in high rainfall conditions, we included 
the mean environmental conditions experienced by each 
individual in the NRN. By including this mean environ-
mental condition, we were able to partition within- and 
between-individual effects of the environment (van de Pol 
and Wright 2009). For each environmental variable (i.e. 
rain and solar radiation), we used linear terms and allowed 
all individuals to vary in their response to environmental 
changes by including random intercept and slope terms, 
using ID as the grouping variable. We also included a 
non-linear seasonal effect by including a circular regres-
sion spline on the day of the year. Finally, we accounted 
for autocorrelation in the residuals using an AR(1) process 
(Dutilleul 2011). We used the R package “brms” (Bürkner 
2017) to fit the model in a Bayesian framework. We scaled 
and centred our dependent and independent variables, and 
used weakly informative priors centred on zero, i.e. Nor-
mal(0,1). Using these priors means that we started our mod-
els under the assumption that the environmental variables 
are most likely to have no effect (McElreath 2020). Model 
diagnostics suggest MCMC convergence, with all R ̂ < 1.01 
and effective sample sizes > 300. All analyses were run in 
the R programming environment 3.5.2.
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Results

Simulated data: NRN with covariance

Fitting an NRN to node strength, using a Gaussian multilevel 
multivariate model, accurately finds that only two nodes (1, 5) 
show plasticity in response to changes in food availability and 
that there are inter-individual differences in intercepts (Fig. 3a). 
In the case of node EC, we see that plasticity in one relationship 
impacts all nodes; that is, all nodes show plasticity in relation 
to changes in food availability (Fig. 3b). We also found that the 
covariance structure estimated in the model using the indirect 
network measure (i.e. EC) closely matches the underlying net-
work used in the simulation (Figs. 2 and 3d). In the case of the 
local measure (i.e. strength), the model correctly found little 
evidence of covariance in measure errors (Fig. 3c).

Comparing the direct and indirect NRN shows how using 
reaction norms, at different scales and different measures, 
can provide insight into the response of social networks to 
changes in the environment. Here, we can see that in the node 
strength NRN, some nodes are correctly estimated to show no 
plasticity (e.g. Figure 2a nodes 4 and 8), while still showing 
plasticity in the model with the indirect measure (i.e. EC) (e.g. 
Figure 2b nodes 4 and 8). The contrast between direct and 
indirect measures correctly suggests that the resulting plastic-
ity observed in their indirect network measure is due to the 
behaviour of others (i.e. other relationships changing that are 
not directly linked to the individual in question).

Simulated data: NRN without covariance

When we drop the covariance matrix, and NRNs were fit 
using the multiple univariate model approach, as well as 
the standard multilevel modelling approach, mean estimates 
of the intercepts and slopes did not show bias (Fig. 4, S5). 
We did, however, find that the estimated standard deviations 
of the estimated intercepts and slopes were biased slightly 
higher in the model using multiple univariate models, but not 
with the standard multilevel modelling approach (Fig. S5).

Observed data results

The results of the baboon NRN on node strength suggest 
some plasticity within the population to both solar radia-
tion and rainfall. The population shows an increase in 
node strength (i.e. proximity events) with increased rain-
fall (brain = 0.16 (95% CI: 0.06, 0.27) and decreased solar 
radiation (bsolar =  − 0.11 (95% CI: − 0.22, 0.00) (Table 1). 
There was also little evidence for both individual differ-
ences in slopes or intercepts in the population (sd param-
eters Table 1). Conversely, in the case of eigenvector cen-
trality, the NRN suggested little population-level plasticity 
in response to environmental change (brain = 0.02 (95% 
CI: − 0.07, 0.11), bsolar =  − 0.07 (95% CI: − 0.16, 0.02), 
Table 1). There was, however, evidence for individual dif-
ferences in intercepts (sdintercept = 0.38, 95% CI: 0.15, 0.64) 
and some evidence of individual differences in response to 
solar radiation but not rainfall (sdrain = 0.05, 95% CI: 0.00, 

Fig. 3   Network reaction norms 
applied to the simulated exam-
ple. As these are simulated data, 
where we know how precisely 
how the data were generated, 
we show in a that estimated 
changes in mean strength in 
response to food availability 
only go up for nodes 1 and 5. 
In b, we show that changes 
in mean eigenvector for each 
node in response to food avail-
ability changes for all nodes 
(i.e. indirect effects). While in 
c and d, we show that using a 
multivariate approach helps us 
to correctly estimate the cor-
relation matrix of the errors for 
c node strength measures and d 
eigenvector centrality measures. 
By presenting this matrix in 
a network format, each edge 
represents a correlation between 
errors (i.e. edges show where 
unexplained changes in eigen-
vector centrality are correlated 
between nodes)
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0.15; sdsolar = 0.08, 95% CI: 0.00, 0.21). The eigenvector 
centrality model also suggests that the individual differ-
ences found were not correlated. For example, the correla-
tion between individual differences in mean eigenvector 
centrality and individual differences in response to solar 
radiation was − 0.14 (95% CI: 0. − 79, 0.87) (see Table 1 
for all correlation results).

Taken together, these patterns can be seen in an NRN 
plot where each line represents the estimated response of 
each individual in the population to changes in the envi-
ronment (Fig. 5). We can see the plastic response of indi-
vidual strength to solar radiation and rainfall, with few 
consistent differences between individuals (Fig. 5a, b). In 
the case of individual eigenvector centrality values, we 
find the opposite. Namely, individuals show mean differ-
ences in eigenvector centrality, and some individuals show 
individual differences in response to solar radiation, result-
ing in the ordering of which individuals are most central 
being dependent on environmental conditions (Fig. 5c, d).

Discussion

Overall, our results suggest that it is possible to use 
an NRN approach to quantify how networks change in 
response to variation in the environment, both in terms of 
node positions and plasticity. We found that it is possible 
to account for the non-independence of node measures by 

using a multivariate approach that can estimate a covari-
ance matrix describing the dependence between nodes. 
The use of covariance matrices in applied settings, how-
ever, can be complicated when there are missing data, or 
when network composition is dynamic. In these cases, we 
have found that standard multilevel models without covari-
ance structures also provide accurate estimates. Related 
to this result, we suggest the problem of statistical con-
founds due to shared covariance structures between pre-
dictors and response variables is circumvented when using 
group-level environmental measures as predictors—e.g. 
daily temperature/rainfall. In the context of quantifying 
how social structures change in response to climate or 
landscape changes, this suggests that NRNs are likely to 
be widely applicable.

Our finding that multilevel models are suitable for mod-
elling network data fits into the wider discussions about the 
use of permutations versus model-based approaches (Hart 
et al. 2021; Weiss et al. 2021; Farine and Carter 2022). In 
general, permutation approaches have been advocated as 
essential for dealing with potential confounds in network 
data. We have shown here that the use of covariance matri-
ces can be another useful tool to account for, and estimate, 
the non-independence of the data. The estimation of these 
covariation matrices can, in and of themselves, also pro-
vide useful insights (Fig. 3c, d). Similarly, a more nuanced 
recognition of when confounding is a problem can provide 
guidance when standard multilevel models are appropriate 

Fig. 4   Comparing estimates of how individual eigenvector cen-
trality changes in response to food using three different statistical 
approaches. The black points are estimates from a multilevel mul-
tivariate normal distribution model that estimates the covariance 
between nodes, while the red points are from a model using the multi-
ple univariate model approach without estimating covariance between 

nodes. Finally, the blue points are estimates from the standard mul-
tilevel model. The estimates in a are the estimated node intercepts, 
while estimates in b are the estimated slopes describing how node’s 
eigenvector centrality responds to food. The 95% credible intervals 
are provided as error bars around the points. These models were all fit 
to simulated data
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(Fig. 1). We take advantage of this more nuanced under-
standing of confounding in social network data to show that 
the standard multilevel modelling approach can be used as 
an NRN when estimating the impacts of environmental var-
iables on social network position and plasticity. Addition-
ally, there have been recent advancements in the use of a 
multilevel modelling that can better account for some of the 
uncertainty in network measures themselves, which could 
complement or replace the time aggregation approach used 
in this paper (Hart et al. 2022; Ross et al. 2022).

Using the NRN approach with our study population 
of chacma baboons, individuals showed similar plastic 
responses to environmental changes in terms of their net-
work strength (i.e. the number of times an individual was 
seen in close proximity to another individual) (Fig. 5a, b). 
Despite these changes in social behaviour, however, indi-
vidual eigenvector centrality within the overall network 
remained relatively stable (Fig. 5c, d). That is, there were 
consistent individual differences in mean network posi-
tions, where some individuals were, on average, consist-
ently higher in eigenvector centrality than others. We did 

find some evidence that changes in solar radiation could 
impact the order of who was most central, and reduce 
mean individual centrality, but the most striking trend was 
that of a stable global network structure in response to 
environmental changes. This suggests that, in this popula-
tion, individual network positions are maintained despite 
changes to individual social behaviours. Additionally, 
we found that across both node strength and eigenvec-
tor centrality, a comparison of differences in mean net-
work position and plasticity in response to environmental 
change showed very little correlation (i.e. more central 
individuals did not show increased/decreased plasticity in 
response to environmental change compared to less central 
individuals).

Biologically speaking, maintenance of a stable network 
structure in the face of changing social behaviour has some 
interesting implications. In terms of directly transmitted 
diseases, for example, our results suggest that individuals 
that are found consistently in central positions could be at 
higher risk of infection and could be efficient vectors of dis-
ease spread to others (Romano et al. 2016). In addition, the 

Table 1   Parameter estimates 
for the network reaction 
norm (NRN) of strength and 
eigenvector centrality. We 
present the parameter estimates 
of the model partitioned into 
(1) the population-level effects 
containing the mean responses, 
(2) the magnitude of individual 
differences in responses, 
(3) the correlation between 
individual differences, and (4) 
the estimated effect size using 
r-squared. The autocorrelation 
term ar[1] is the estimated 
magnitude of the autoregressive 
process of order 1. For each 
parameter, the 95% lower/upper 
credible intervals are presented. 
Solar radiation is referred to in 
the table as SIS

NRN Category Parameter Mean Lower CI Upper CI

Strength Population Rain 0.16 0.06 0.27
Rain (between) 0.81 0.05 1.59
SIS  − 0.11  − 0.22 0.00
SIS (between) 1.01 0.20 1.79

Individual differences sd(Intercept) 0.15 0.01 0.39
sd(SIS) 0.08 0.00 0.22
sd(Rain) 0.07 0.00 0.20
sd(Sigma) 0.24 0.04 0.46

Correlations cor(Inter,SIS)  − 0.06  − 0.91 0.86
cor(Inter,Rain)  − 0.03  − 0.89 0.86
cor(SIS,Rain)  − 0.09  − 0.91 0.86
ar[1] 0.40 0.27 0.53

Effect size Marginal R2 0.12 0.05 0.21
Conditional R2 0.16 0.07 0.26

Eigenvector Population Rain (within) 0.02  − 0.07 0.11
Rain (between) 0.27  − 0.70 1.22
SIS (within)  − 0.07  − 0.16 0.02
SIS (between) 1.17  − 0.03 2.36

Individual differences sd(Intercept) 0.38 0.15 0.64
sd(SIS) 0.08 0.00 0.21
sd(Rain) 0.05 0.00 0.15
sd(Sigma) 0.25 0.13 0.40

Correlations cor(Inter,SIS) 0.14  − 0.79 0.87
cor(Inter,Rain)  − 0.20  − 0.93 0.79
cor(SIS,Rain)  − 0.04  − 0.88 0.87
ar[1] 0.48 0.37 0.60

Effect size Marginal R2 0.04 0.01 0.11
Conditional R2 0.19 0.07 0.31
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consistency of network structure suggests that these attrib-
utes are likely to be held by individuals over longer periods 
of time and could lead to appreciable fitness-related costs/
benefits. Given that individuals were also found to alter their 
rate of social behaviour (i.e. grooming) in relation to both 
solar radiation and rainfall, it is possible that environmental 
conditions could speed up or slow down the spread of infec-
tions through this stable network structure. This, in turn, 
implies that the risk of infection for more central positions 
might be higher under certain environmental conditions. In 
our study population, where infectious disease has had dras-
tic impacts (Barrett and Henzi 1998), and in other suscepti-
ble social species, the results of NRNs can provide insights 
into the propagation of infectious disease in response to 
environmental change.

The use of NRNs to quantify how social behaviour 
and structure vary in response to environmental changes 
facilitates various forms of comparisons across species, or 
within species across populations, and can provide insights 
into the evolution and development of social behaviour 
more generally (Sueur et al. 2019). For example, if we 
consider comparisons within species and across different 
study sites, it is possible to investigate whether individual 
variation in centrality is largely due to inter-individual dif-
ferences in mean centrality (i.e. intercepts)—as our study 
suggests—or determine whether some populations also 
show greater individual differences in network plasticity 

and, if so, under what environmental conditions. When 
comparing across species, one could investigate whether 
phylogenetic relatedness and/or environmental conditions 
predict the magnitude of inter-individual differences in 
mean network position and/or inter-individual differences 
in network plasticity. Additionally, by combining NRNs of 
different measures, it is possible to look at both adaptabil-
ity in social structuring and social behaviour, quantifying 
flexibility in social structure (e.g. whether and how overall 
network structure changes) and flexibility in social behav-
iour (i.e. how individuals vary their behaviour in order to 
compensate for environmental changes, and, potentially, 
act to preserve network/social structure). For example, it 
is generally predicted to be the case that, for primate social 
groups, individual behaviours will vary while social struc-
tures remain stable, whereas for other species, such as the 
African striped mouse (Rhabdomys pumilio), changes in 
environment can lead to drastic changes in social organisa-
tion with little change in individual behaviour (Henzi et al. 
2009, 2013; Schradin 2013).

More generally, the ability to better understand and make 
predictions about social networks in changing environments 
can have direct implications for disease management, pop-
ulation-level dynamics, as well as other ecological and evo-
lutionary processes where social network structures have 
been shown to be an influential component (Cantor et al. 
2019). Additionally, increases in geospatial infrastructure 

Fig. 5   Network reaction 
norm estimates for individual 
response to rainfall and solar 
radiation: a, b individual 
strength and c, d individual 
eigenvector centrality. Each 
line represents an individual 
estimated response, along with 
their 95% credible intervals as 
shaded grey areas
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have made a growing amount of environmental data avail-
able, particularly from freely available satellite remote sens-
ing datasets (e.g. Sentinel-2, Landsat, Modis) (Turner et al. 
2015; Leidner and Buchanan 2018), facilitating the integra-
tion of dynamic social networks with environmental meas-
ures. This suggests that an NRN approach could be a very 
useful approach for studying the response of social species 
to both landscape and climate changes.

Shifting towards a dynamic view of social networks will 
make it possible to better understand social changes in ani-
mal groups. The extension of the behavioural reaction norm 
framework to the analysis of dynamic social networks (i.e. 
NRN) offers the ability to quantify how social networks 
respond to environmental change and can provide neces-
sary insights into the interaction between social and physical 
environments.

Supplementary information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00265-​023-​03300-2.
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