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Abstract
1.	 Animal social networks are often used to describe dynamic social systems, where 

individual behaviour generates network-level structures that subsequently in-
fluence individual-level behaviour. This interdependence between individual 
behaviour and group structuring is of central concern for questions concerning 
the evolution and development of social systems and collective animal behaviour 
more generally.

2.	 Various statistical methods exist for estimating network changes through time. 
One approach, time-aggregated networks, takes repeated snapshots of interac-
tions within windows of time to generate a time series of networks. However, 
there remain many analytical hurdles when implementing the time-aggregated ap-
proach. To ameliorate this, we introduce an r package netTS that focuses on three 
analytical steps for analysing time-aggregated networks: choosing appropriate 
time scale using bootstrapping, comparing patterns to relevant null models using 
permutation and finally building and interpreting statistical models using simu-
lated data. We use simulated data to first highlight these steps, then use observed 
grooming data from a group of vervet monkeys as an applied example.

3.	 Our results suggest that the use of bootstrapping and permutation can accurately 
extract known patterns from simulated data. Using this approach with vervet data 
suggests that there is consistent social structuring, differing from what would be 
expected due to chance, and that some individuals are contributing to this struc-
ture more than others (i.e. keystone individuals).

4.	 We demonstrate that bootstrapping, permutation and simulation can aid in con-
structing and interpreting time-aggregated networks. We suggest that the use of 
time-aggregated networks to quantify patterns of network change can be a use-
ful tool alongside process-based approaches that seek mechanistic descriptions. 
Ultimately, by looking at both patterns and processes, dynamic networks can be 
used to better understand how individual behaviour generates social structures, 
and in turn how individual behaviour can be influenced by social structures, ulti-
mately leading to a better understanding of the evolution of social behaviour.
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1  | INTRODUC TION

Understanding the dependence between individuals in social groups 
has been enhanced by the use of network approaches. A network 
approach deconstructs a social group into nodes and edges, repre-
senting respectively, individuals and the relationship between in-
dividuals (Newman, 2010). This allows for the description of social 
dependence between two individuals (dyad scale), around the indi-
vidual (ego scale) and at the entire group level (network scale). This 
approach has become a successful and common method in various 
research fields, with the result that many theoretical and empirical 
predictions are tied to measurements of networks (Chapman et al., 
2016; Duboscq, Romano, Sueur, & MacIntosh, 2016; Griffin & Nunn, 
2012). In some cases, these theoretical and empirical concerns are 
temporal in nature, requiring some measure of how social networks 
change in time, i.e. viewing networks as dynamic rather than static 
(Aplin et al., 2015; Bonnell, Vilette, Henzi, & Barrett, 2019; Formica, 
Wood, Cook, & Brodie III, 2017). For example, the magnitude of 
repeatability in social network position has direct implications for 
the selection of social phenotypes within a population (Aplin et al., 
2015). Similarly, when populations experience demographic changes 
such as the birth of new individuals, the magnitude of a juvenile 
copying their mother's social partners can have important conse-
quences for the long-term stability of a population's social struc-
ture (Ilany & Akçay, 2016; Jarrett, Bonnell, Young, Barrett, & Henzi, 
2018). Thus, network measurements in time can have important im-
plications (Farine, 2018).

One particularly advantageous outcome of switching from static 
to dynamic social networks is the ability to address questions of pro-
cess in collective behaviour. For example, to understand how shifts in 
one individual's behaviour might cause a cascade of changes through-
out a social group requires a dynamic network approach. A particular 
interest in collective behaviour is the feedback between individual-  
and group-level dynamics. Namely, how variation in individual- 
level behaviour creates group level structures, which in turn 
influences further development of individual behaviour (Sumpter, 
2010). By treating networks as dynamic, it becomes possible to 
identify and quantify the processes driving these individual-group 
feedbacks to gain a better understanding of how individual-level 
variation develops and what are the consequences for group-level 
behaviour. Interestingly, this particular focus on individual variation 
has some parallels with work in population dynamics that might 
prove useful in social network contexts (e.g. Benton, Plaistow, & 
Coulson, 2006).

Methodologically, time-ordered and time-aggregated network 
constructions have been introduced for analysing dynamic net-
works (Blonder, Wey, Dornhaus, James, & Sih, 2012). On one hand, 
time-ordered networks are networks that retain the order of inter-
actions. These network constructions have been shown to be espe-
cially valuable when interested in questions about flow on a network 
(e.g. information, disease), as the timing of individual interactions can 
have important implications for the transmission between distant 
individuals (Blonder & Dornhaus, 2011), though see Farine (2018) 

for a discussion about when accounting for timing of interactions 
might be more/less justified. On the other hand, time-aggregated 
networks are constructed by aggregating data within a period of 
time and can be useful for addressing questions regarding changes 
in network topology. Depending on the scale of aggregation, these 
time-aggregated networks lose the ability to directly query when two 
individuals interact. However, they can provide information about 
how those interactions change between time-aggregated networks 
and therefore, can be very useful in measuring structural changes 
in networks through time. For example, time-aggregated networks 
have been used to compare how density of social networks changes 
between mating and birthing seasons (Brent, MacLarnon, Platt, & 
Semple, 2013).

There are a variety of software packages that enable the analysis 
of networks in time (e.g. Blonder et  al., 2012; Fisher, Ilany, Silk, & 
Tregenza, 2017). In particular, the time-ordered (Blonder & Dornhaus, 
2011) package handles both time-ordered and time-aggregated 
network construction whereas the networkDynamic (Butts, Leslie-
Cook, Krivitsky, & Bender-deMoll, 2016) one can be used to extract 
time-aggregated networks. Here we introduce a custom r pack-
age: netTS. Its purpose is to ease the construction and analysis of 
time-aggregated networks by: (a) facilitating window size choices 
by comparing (i) how time series extracted from time-aggregated 
networks change with window size, as well as (ii) how uncertainty in 
network measures change with window size, (b) contrasting the ob-
served time series against null models using network permutations, 
and finally, (c) simulating network data to test, refine and interpret 
statistical models used to analyse time-aggregated networks. A crit-
ical step when constructing time-aggregated networks is choosing 
the window size, as it defines the temporal scale at which networks 
are constructed and measured. Choosing a scale that is both bio-
logically meaningful, and contains enough data to construct a net-
work that is representative of the group, can prove to be difficult. 
Similarly, comparing networks to a range of null network models is 
becoming standard practice to help identify and interpret structure 
in a network (Croft, Madden, Franks, & James, 2011; Farine, 2017; 
Whitehead, 2008). Finally, simulations are becoming an essential 
part of good statistical practice and can be used to validate the use 
of a particular statistical tool (Gelman et al., 2013). The netTS package 
incorporates advances in these three areas to allow users to choose 
appropriate time-scales, identify temporal structural changes and to 
make informed inferences from statistical models.

In this paper we first give an overview of analysing time-aggregated 
networks using the netTS package with simulated data. We then use 
grooming data from a group of vervet monkeys Chlorocebus pygeryth-
rus to provide an example of using time-aggregated data to address 
questions concerning the temporal dimensions of social structur-
ing in animal populations. Here, comparing the result of simulations 
to empirical data can be a useful way of inferring candidate mecha-
nisms generating social structure (Farine, Downing, & Downing, 2014; 
Sumpter, Mann, & Perna, 2012). Given that social structure is gener-
ated by individual-level behaviours, we investigated whether some 
individuals were disproportionately responsible for the maintenance 
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of social structure through time, i.e. are there keystone individuals 
driving group structuring through their grooming interactions? Here 
we focus on quantifying the variation in influence of individual groom-
ing behaviour on the social structure of the group through time. This 
example targets only part of the collective behaviour framework (i.e. 
individual-level behavior  →  group-level structuring, not group-level 
structuring → individual-level behaviour) and provides an example of 
how the time-aggregated approach can be useful in studying collective 
animal behaviour more generally.

2  | MATERIAL S AND METHODS

To introduce the netTS package, we first present the moving win-
dow approach for constructing time-aggregated networks from 
relational data. We then use simulated datasets to showcase three 
analytical steps to choose temporal scales and interpret results 
from the time-aggregated approach: (a) bootstrapping to choose 
lower limits to window size choices, (b) multiscale time-series 
analysis to check for natural temporal scales, and finally (c) the 
use of permutation to interpret network measures extracted from 
these time-aggregated networks. We perform these steps with 
two sets of simulated data: one in which there is no structure, 
and a second one with structure. This allows us to test whether 
the proposed methods can accurately detect (i) the presence of 
an underlying network structure and (ii) when there is none. The 
full package code can be found on github (github.com/tbonn​e/
netTS​), along with tutorials  (Appendix S1), and the code used in 
the analyses presented here.

After this introduction to the package using simulated data, we 
present an example using observed vervet grooming data. We first 
show how one can use bootstrapping and natural scales to help 
choose an appropriate temporal scale. We then show how network 
permutations can be used to identify network structures through 
time. Finally, we sought to quantify keystone individuals, i.e. individ-
uals whose grooming behaviour has a larger impact on the overall 
network structure.

2.1 | The moving window approach to aggregation

Generally, when constructing social networks using time-aggregated 
networks to interrogate relational data, a careful consideration of 
scale is required, e.g., is it best to group data into daily/monthly/
yearly networks (Blonder et  al., 2012)? This package aims to help 
with this process using a moving window approach designed to work 
with any relational data accumulated through time. The main input 
to the netTS package is a dataframe with the first two columns defin-
ing who is interacting, a third column with a date time stamp and an 
optional weight column specifying the duration or magnitude of each 
interaction. Therefore, data collected by ad libitum sampling, focal 
follows, scan sampling or gambit of the group can be used, though 
careful consideration of how to control for variation in sampling 

effort must be considered for each type of sampling methodology 
(see Section 2.3.1 below).

The moving window approach allows a user to define its size 
(e.g. windowsize  =  1  month) and the amount to shift the window 
(e.g. windowshift  =  1  day). This moving window subsets the rela-
tional data within a window and creates a network. It then shifts 
in time and repeats the process. By altering the size and shift of a 
moving window, it is possible to generate a time series of networks 
(Figure 1), which can be thought of as generating a multilayered net-
work in which each network layer encodes the same type of inter-
actions at different time points (Finn, Silk, Porter, & Pinter-Wollman, 
2019).

2.2 | Simulated data

To validate our proposed methods, we simulated interaction data 
following a scan sampling design. In these simulations, an observer 
will scan a group of individuals a number of times where each indi-
vidual has the probability of interacting with another individual with 
probability A. Here we set the probability to 0.10 for all individuals. 
If during a scan an individual is to interact with another individual, 
it will choose from its neighbour based on a fixed underlying net-
work. Here we simulate interactions with a fully connected network 
(i.e. everyone is as likely to groom everyone) and a network with 
a skewed degree distribution (i.e. everyone has a few grooming 
partners, and some have a lot). For the simulation with the skewed 
network we additionally add a seasonal component to interaction 
probability, where there are seasonal fluctuations in probabilities 
in which individuals interact. The distances between peak interac-
tions was set to 35  days with an increased interaction probability 
of 0.2. We provide the function used to simulate these data in the 
netTS package as the method sim.events.data (see vignette for more 
information).

2.2.1 | Identifying a lower limit to window size

The ability to alter the window size introduces the possibility of mul-
tiple scales being chosen. The lower limit to window size choices can, 
to some extent, be specified by the fact that as window size gets 
smaller, less data are aggregated within each network and the net-
work measures become progressively noisier, i.e. more dependent 
on the specifics of the remaining samples. This lower limit is likely to 
be a function of the rate of sampling and the biology of the behav-
iour under study (Farine, 2015).

To identify the lower limit of window size choices, for a particu-
lar dataset, we take advantage of a bootstrap approach on the event 
data used to create the networks. Applying this method, it is pos-
sible to take multiple bootstrap samples of the event data within a 
window, create a network with the bootstrapped sample, calculate a 
network measure and then estimate the relative similarity between 
measures from the bootstrapped networks and the observed network 

http://github.com/tbonne/netTS
http://github.com/tbonne/netTS
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F I G U R E  1   Overview of using a moving window approach to extract network measures over time: (a) the relational input data, (b) 
generate the time series of networks using a moving window approach, and (c) extract network measures at the dyadic, node and network 
scales

(a)

(b)

(c)
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(Costenbader & Valente, 2003; Farine & Strandburg-Peshkin, 2015; 
Lusseau, Whitehead, & Gero, 2009). Highly similar estimates, and low 
variation in estimates, indicate that the network measure is robust to 
bootstrapped sampling, suggesting that the chosen window size is 
adequate to provide a good measurement. To test the efficacy of the 
bootstrapping approach, we provide a simulation test that suggests 
the relationship between bootstrapped networks and observed net-
works can provide useful information about the relationship between 
observed networks and a network constructed with all interactions 
(i.e. a complete network) (Figure S1).

Additionally, given that the bootstrap can only sample from the 
observed interactions, there is the possibility that missing interactions 
can drastically alter the network measure. In order to estimate the sen-
sitivity of the network to missing data, we additionally estimate the 
effect of subsampling. To do so, we perform the bootstrapping proce-
dure but on a subsampled portion of the observed data, and compare 
the resulting bootstrapped networks to the measures in the observed 
network (Carter, Schino, & Farine, 2019; Costenbader & Valente, 
2003). This combination of bootstrapping and subsampling provides 
the user with the ability to assess uncertainty in a network measure 

under different window size choices. We implement this test in the 
check.windowsize function in netTS allowing users to experiment with 
potential window size choices. We further caution that there remains 
much work to be done in estimating network measure uncertainty 
(Farine & Strandburg-Peshkin, 2015).

This approach of using bootstrapping and subsampling is 
meant to test if the observed sample used to generate the net-
work is sufficient to reliably capture network structure, i.e. if you 
had a slightly different observed sample, would the network struc-
ture come out roughly the same? Applying this approach to the 
simulated datasets, we found that, for the unstructured simulated 
dataset, increasing the window sizes (even at a 60-day window), 
the similarity did not increase, and the effect of subsampling was 
comparably high (Figure 2a,c,e). Whereas for the structured data-
set, increasing the window sizes led to higher similarity between 
bootstrapped samples and observed samples (Figure 2b,d,f). It 
also reduced the effects of subsampling. This suggests that using 
bootstrapping to estimate uncertainty can help distinguish be-
tween unstructured and structured networks, and identify lower 
limit to possible window size choices.

F I G U R E  2   Estimating the lower bound of window size choice using bootstrapping and subsampling. Examples are shown for the 
unstructured (a, c, e) and structured (b, d, f) simulated datasets. Lines represent mean cosine similarity, shaded region the 95% quantiles, 
from 100 bootstrap comparisons between node degree in the observed and bootstrapped networks. Time series of observed networks 
were constructed using window size choices of 10, 30 and 60 days. To estimate the sensitivity to missing edges, this procedure was repeated 
using a random subsample of the original dataset (i.e. 1, 0.8 and 0.6 of the original data)
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2.2.2 | Choosing a window size

The choice of the upper limit to potential window sizes, apart from 
the maximum time-scale of the dataset, has no a priori limit and will 
increasingly capture longer-term trends. In some cases, depending 
on the temporal dynamics of the systems of interest, ‘natural’ scales 
can potentially exist (Caceres, Berger-Wolf, & Grossman, 2011). To 
aid in looking for natural scales we introduce the use of sample en-
tropy as an approach that works well with many types of time series 
data (Richman & Moorman, 2000). This measure is maximized when 
the time series is either completely random, or completely static 
and minimized as the time series becomes more structured. Sample 
entropy is calculated by looking at sequences of values in a time 
series and comparing how many times each sequence of length n 
appears in the time series to how many times the sequence n + 1 
appears. The ratio between the two provides an estimate of pre-
dictability, e.g. if the first two values in the time series are 2.5 and 
4.6, how many times do you find this sequence of 2, and if it is fol-
lowed by the value 3.2, how many times do you find this sequence 
of 3 (i.e. n + 1). By looking at how temporal scale alters this ratio, it 
is possible to identify potential natural scales, and provide a sense 
of how a particular network measure changes with temporal scale 
(Costa, Goldberger, & Peng, 2002). The netTS package provides a 
function (check.timescale) to plot how sample entropy in a particu-
lar network time series measure changes with window size choices 
(i.e. scale). As the identification of temporal scales is an area of 
active research, we also provide the ability to input user defined 
functions to assess how temporal scale alters network time series 
measures (e.g. how does total coefficient of variation in the time se-
ries change with time scale?) (see vignette: choosing window size).

When we apply this approach to the simulated data, we see 
that in the case where there is no structure (full network) and 
where interaction probabilities remain constant, we find high sam-
ple entropy values (compared to the structured simulated dataset) 
with a shallow decrease in sample entropy as window size in-
creases (Figure 3a). We also find large divergences between boot-
strapped replicates. For the dataset with a structured network 

(skewed degree distribution and a seasonal change in interaction 
probabilities), we find lowest sample entropy at the true seasonal 
time-scale as well as high agreement between bootstrapped rep-
licates (Figure 3b).

Overall, the question of interest and knowledge of the study 
system are likely to play a large role in choosing the temporal scale 
to measure network change. In general, apart from attempting to 
identify one optimal window size, it is likely the case that the way a 
pattern of interest changes depending on the time-scale chosen will 
itself be of great interest (Costa et al., 2002; Levin, 1992).

2.3 | Extracting Network measurement 
through time

Once a window size has been selected and a time series of networks 
generated, it is possible to use network metrics at the scale of the net-
work, node or dyad (Newman, 2010). Although a few common metrics 
are built into the netTS package, the network measure required is a user-
specified function. This function takes a network as input and returns 
a value, or vector of values in the case of node or dyadic measures. By 
using user-generated functions, the package can take advantage of the 
wide range of network measures available, without constraining users 
to a pre-specified list of options (see vignette: Introduction to netTS).

2.3.1 | Controlling for sampling effort/time

Given the time series nature of the data, as well as the potential for 
variation in data collection methods through time, it is important to 
consider how changes in sampling effort might impact a potential 
measure (Davis, Crofoot, & Farine, 2018; Franks, Ruxton, & James, 
2010). In some cases, the ability to use scaled or transformed meas-
ures, such as the simple-ratio index (SRI), can facilitate comparisons 
between networks in time (Farine & Whitehead, 2015). Another op-
tion, that keeps the measure on the observed scale, would be to di-
rectly control for sampling effort over time. This approach converts 

F I G U R E  3   Sample entropy by window size for (a) a simulated dataset constructed with no imposed temporal scale, (b) a simulated dataset 
with a temporal scale imposed. The sample entropy from the observed data, along with five bootstrapped datasets, is calculated for each 
window size choice. The dashed line in (b) indicates the imposed seasonal component in the simulated data
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the observed social behaviour to a rate (e.g. interactions/hours of ob-
servation, or interactions/number of scans). For example, to construct 
an interaction network in Thronbills (genus Acanthiza), Farine (2015) 
divided the number of observed interactions between individuals by 
the time observed in the same flock. The netTS package offers the 
possibility to include a sampling effort function in order to help the 
user to control for a certain type of sampling effort. These functions 
take as input an event's dataframe and return a single value of effort. 
The netTS package provides three functions. The first approach sums 
the total time (effort.time), based on the first and last sample time of 
each day within a window. This method assumes equal sampling effort 
throughout the day, i.e. ad libitum data collection. The edges in net-
work are divided by the time spent observing (number of interactions 
observed/number of hours observed). The second approach (effort.
scan) uses a dataframe, supplied by the user, containing the number of 
scans during sampling periods, e.g. number of scans per day. This ap-
proach is useful when observations are captured within set scanning 
periods and would be suitable for sampling regimes where periodic 
scans are used to collect data. Here, the edges in networks are divided 
by the number of scans within a window. Finally, the third effort func-
tion is designed to correct for variation in effort with focal data (effort.
focal). This method requires a user supplied dataframe with times and 
durations of focals. Each edge of the constructed network is divided 
by the amount of time it could have been observed, e.g. an interaction 
between A and B can only be observed when either A or B is the focal. 
In other words, if A and B are followed for 10 and 5 min respectively, 

then 15 min is the total amount of time where A and B could have, po-
tentially, been seen interacting. As sampling effort will vary by dataset 
and collection method, it is also possible to construct user defined ef-
fort functions to correct for sampling effort when estimating network 
measures (see vignette: controlling for sampling effort). Given that our 
simulated data do not show variation in sampling effort, we present 
some examples using these methods below with our field data on 
vervet monkeys.

Because variation in sampling effort can have a large impact on 
the network structure, it needs to be considered carefully (Davis et al., 
2018; Whitehead, 2008). Here we suggest the use of network indi-
ces (e.g. simple-ratio index) tailored in reducing variation in sampling 
effort, as well as the conversion of dyad weights to ratios by dividing 
interactions by sampling effort directly. We also propose the use of 
null network models, that can incorporate variation in sampling effort, 
to better distinguish what network structures might simply be a result 
of variation in sampling effort (Croft et al., 2011; Farine, 2017).

2.4 | Interpreting measures through time using 
null models

Given the ability to compare how a network changes in time, it can 
also be useful to contrast how this changing network relates to a 
null model using network permutations. The exact specification of 
the null model, i.e. how it is constructed, can aid in understanding 

F I G U R E  4   Eigenvector centrality extracted from networks generated using (a, c) unstructured and (b, d) structured simulated datasets. 
Permutations of individuals between simulated interactions were used to generate the range of eigenvector centrality values expected due 
to random interactions, while retaining individual differences in the amount of interactions



8  |    Methods in Ecology and Evolu
on BONNELL and VILETTE

the structure of the observed network. For example, it is possible 
to construct a time series of centrality measures within a groom-
ing network and look for trends over time. However, if we want to 
compare centrality measure to what might be expected if groom-
ing partners are chosen at random, we would want to use a null 
model. The aim of the null model is to create replicated datasets 
in which the aspect that is of most interest to us, often who is ob-
served with who, is randomized (Farine, 2017). Here, the choices of 
the null model can help refine how the observed pattern is differ-
ent (Croft et al., 2011; Farine, 2017; Whitehead, 2008). You could 
decide to take all grooming events and randomly distribute them 
between nodes to generate a null model. Similarly, you could retain 
the fact that some individuals are more present in grooming events 
than others by permuting individuals between grooming events. 
You could then compare the observed network to those null mod-
els to make inferences about how it differs, or not. The way that 
the observed networks differ from the permuted networks and 
the specific choices of how permutations are carried out, can help 
highlight important structure in the observed networks. In netTS, 
by performing permutations for each time-aggregated network, 
it allows for estimations of how the network diverges from a null 
model through time (e.g. is it consistently different, or are there 
only certain times/seasons where there is a difference?). We pro-
vide some predefined permutation methods in netTS, but also 
allow for user-specified permutation functions that will take an 
event data frame as input and return a range of network measure-
ment values (see vignette: Using network permutations).

With the simulated data, we show that using permutations 
can distinguish between the structured and unstructured datasets 
(Figure 4). The measures of eigenvector centrality and out-degree, 
for the unstructured simulated dataset, are well within the range ex-
pected due to randomized interactions (Figure 4a,c). However, in the 
case of the structured simulated dataset, we find that out-degree is 
well outside the range expected due to random, and for eigenvec-
tor centrality some values fall inside and outside the range expected 
due to chance interactions (Figure 4b,d). Given that the permutation 
used kept the number of times each individual was seen in an inter-
action, it then also retained the skewed degree distribution in the 
structured simulated dataset. The difference between the permuted 
and observed networks are then only driven by the difference in the 
arrangement of the edges beyond degree distribution. This, there-
fore, suggests only slightly more centralization than expected, given 
the skewed degree distribution.

3  | USING NET TS:  AN E X AMPLE OF A 
PRIMATE SOCIAL NET WORK

3.1 | Input data

We use grooming data from a fully habituated group of vervet mon-
key in the Eastern Cape of South Africa (Josephs, Bonnell, Dostie, 
Barrett, & Henzi, 2016), e.g. Table 1. These gregarious primates 

occupy a semi-arid environment with large seasonal fluctuations of 
both temperature and rainfall, and similarly show seasonal breeding 
patterns (Lubbe et al., 2014; McFarland, Barrett, Boner, Freeman, & 
Henzi, 2014; McFarland et  al., 2015). These data were collected by 
scan samples taken twice every hour for 10 min, during 10-hr days, 
approximately 3–5 days per week between July 2015 and July 2016. 
The group consisted of 9–13 males and 11–16 females over the study 
period.

3.2 | Correct for changing sampling effort

Given that sampling effort can vary between time periods, it is im-
portant to control for it when comparing certain network measures 
over time, with some measures being more sensitive to sampling ef-
fort than others: e.g. node strength versus node degree. Here, we 
demonstrate how controlling for the number of scans alters average 
strength of a network over time (Figure 5). All subsequent analyses 
use these corrected network measures.

3.3 | Assess window size choice

We first use the bootstrap test to identify the lower end of possible 
window size choice (Figure 6). The results show that, given the tem-
poral resolution of the vervet data network, measurement accuracy 
is reduced in window sizes below 30 days. By looking at estimates 
of similarity across the study period, it can also help to identify time 
periods where sampling effort was not adequate for a particular 
window size. For this vervet dataset, the consistently high similarity 
between the bootstrapped and observed networks, using a 60-day 
window, suggests that the window size results in robust networks.

We then vary the window size from 10 to 150 days to see how 
sample entropy changes (Figure 7). In this case, sample entropy 
showed a quick decrease in entropy similar to the shape of the un-
structured simulated dataset, though with a lower entropy and higher 
agreement between bootstrap samples. We also found a smaller scale 
oscillation of 7 days, picking up that data was not collected during 
the weekends. Given the bootstrap and sample entropy results, we 
choose a window size of 63 days, meeting the bootstrap minimum and 
accounting for the temporal effect of weekend in our data.

It is also important to note that, when looking at how a time series 
changes with temporal scale (i.e. window size), the results will depend 
on the particular network measure used to construct the time series, 
e.g. mean network strength/degree, or eigenvector centrality might 
show very different responses to changes in temporal scale. In this 

TA B L E  1   Example data used as input for the netTS package

From <chr> To <chr> Date <S3: POSIXct>

Laur Malc 2015-07-01 12:32:19

Malc Laur 2015-07-01 12:33:01

Ubun Wall 2015-07-01 16:08:26
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case, we used mean strength of the network due to our interest in how 
changes in individual network strength impacts group level structures.

3.4 | Assessing network structure through time

We used a permutation approach to assess the consistency of 
mean out-degree (the number of partners groomed) and mean 
eigenvector centrality of the network (magnitude to which the 

grooming interactions concentrate on a few well-connected indi-
viduals) (Figure 8).

We can see from Figure 8 that, within the group, out-degree 
is consistently lower than expected with random grooming inter-
actions, i.e. individuals are more selective with whom they groom 
compared to random. Whereas, in the case of mean eigenvector 
centrality, there is less differentiation between random and ob-
served networks, with only occasional times when mean eigen-
vector centrality is not lower than expected by chance. In these 

F I G U R E  5   Mean network strength 
over time for a group of vervet monkeys: 
(a) without correcting for sampling effort 
in the field, and (b) after correcting for 
sampling effort

F I G U R E  6   Results of the bootstrap 
test to quantify the uncertainty in 
networks constructed using (a) 10 day, (b) 
30 day, and (c) 60 day window sizes. For 
each window size, cosine similarity values 
between observed and bootstrapped 
estimates of node degree are presented 
for the full data and subsampled datasets 
to assess sensitivity of network structure 
to missing data. Higher similarity 
estimates and lower variability around 
these estimates, indicated by the shaded 
areas (95% CI), suggest more robust 
network measurements
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examples, the null network had a higher mean out-degree and 
mean eigenvector centrality compared to the observed. It is also 
important to note that, in netTS, it is possible to compare net-
works to null network models, however there is no function at the 
moment to compare two networks directly to each other using 
permutation.

3.5 | Identifying keystone individuals

To identify keystone individuals, we look to see how individual 
changes in out-grooming behaviour influenced the centrality of 
the group as a whole. Here, we are interested in answering the 
question: do some individuals influence the social structure of 
the group more than other individuals when they groom? If cer-
tain network structures have beneficial effects for individual fit-
ness within a social group, are some individuals more responsible 
for the maintenance of this structure, and how does that relate 
to who benefits most from a particular social network structure 
(Alberts, 2019; Brent, 2015; Schülke, Bhagavatula, Vigilant, & 
Ostner, 2010)? An example of this is that eigenvector centrality 

has been shown to be a better predictor of offspring survival in 
female baboons than dyadic-level connections (Cheney, Silk, & 
Seyfarth, 2016).

With the netTS package, we extracted individual out-groom-
ing strength and eigenvector centrality of the network over time. 
We then used a generalized additive mixed model to estimate how 
changes in individual out-grooming influenced the eigenvector 
centrality of the network. We allowed this effect to vary by in-
dividual by using a random slope for the effect of out-grooming. 
If this random slope turns out to be negligible, it would suggest 
that changes in out-grooming behaviour for all individuals have 
the same effect on mean eigenvector centrality. We also control 
for seasonal effects via a circular basis spline on day-of-year, and 
model dependence in the residuals using an AR1 process. We fit 
the model with the brms package following a Bayesian approach 
(Bürkner, 2017).

The model suggests that there are some differences between 
individuals in the effect of their grooming on centrality of the group 
(standard deviation in the effect of grooming: SD (grooming) = 0.16, 
95% CI: 0.10, 0.24) (Table S1). Running the model with and without 
a random slope (∆WAIC = −24.38, SE = 15.26) suggests that there  

F I G U R E  7   The relationship between 
window sizes used to create networks 
(i.e. temporal scale), and sample entropy 
of the resulting time series. Observed 
sample entropy measures are presented 
along with measures calculated on five 
bootstrapped samples from the observed 
data

F I G U R E  8   Permutation across time: 
(a) mean out-degree of grooming, and 
(b) mean eigenvector centrality. The 
observed values are presented as blue 
points, and the 95% quantiles generated 
through permutations are presented as a 
pink ribbon
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is some evidence for individuals that are associated with increases/
decreases in centrality when their out-grooming increases, and 
points to potential keystone individuals (Figure 9).

To better interpret and make inferences from these results, we 
use the unstructured and structured simulated datasets. Running 
the same regression model on simulated data, with a fully connected 
grooming network, suggests that when individual grooming is not 
constrained, i.e. all individuals have equal probability of receiving 
grooming, the model showed little difference in individual influence 
on group eigenvector centrality (SD (grooming) = 0.04, 95% CI: 0.00, 
0.08) (Table S2). However, in the case where individuals show con-
straints in their grooming behaviour (i.e. there was a skewed distribu-
tion), the model found differences in the effect of node out-strength 
on centrality of the group (SD (grooming) = 0.09, 95% CI: 0.05, 0.14) 
(Table S3). Given these simulated data were constructed with a fixed 
network structure, and no between individual differences in groom-
ing probability, the results suggest that certain positions within the 
network can have more of an impact on eigenvector centrality. In the 
case of the observed data, where the network structure is dynamic 
and there are individual differences in grooming, we see larger esti-
mates of individual differences in their impacts on eigenvector cen-
trality. This suggests that variation in individual contribution to group 
structuring is more prominent in the observed dataset, though more 
work would be needed to tease apart the role of individual differences 
in network position and interaction rates on group level structure. 
This example, however, does highlight that the use of simulated data 
can be used effectively to better interpret results from observed data.

4  | CONCLUSIONS

Time-aggregated networks are a promising approach for quantify-
ing patterns of structural change in animal social networks. Taking 

a dynamic view of social structure can address recent questions in 
the animal social network literature. For example, if certain net-
work positions or characteristics provide fitness benefits (Alberts, 
2019), a dynamic approach to networks can be used to quantify 
the consistency to which individuals maintain these positions/
characteristics and, potentially, could reveal the mechanisms be-
hind these processes (Ostner & Schülke, 2018). Similarly, in a more 
applied context, given social structuring has the potential to in-
fluence population dynamics (Alberts, 2019; Benton et al., 2006; 
Cantor et al., 2019), a dynamic approach might be used to better 
understand how environmental changes influence social structur-
ing, providing further insights into population dynamics of social 
species in response to climate or landscape changes. The con-
struction of time-aggregated networks, however, requires careful 
consideration of measurement and temporal scale. Similarly, the 
choice, parameterization and interpretation of statistical models 
employed to analyse the resulting time series of networks require 
careful inspection. We advocate for the use of bootstrap, permu-
tation and simulation to facilitate decision-making regarding these 
choices, and have introduced the netTS package for this purpose. 
We suggest that the patterns of change in social networks can 
be used in combination with process-based approaches, e.g. sto-
chastic actor oriented networks, or relational event models, which 
seek mechanistic descriptions (Butts, 2008; Snijders, Van de Bunt, 
& Steglich, 2010). This combination of pattern and process is vital 
for understanding both the drivers behind social structuring and 
the subsequent consequences of these structures in social groups, 
leading to a better understanding of the dynamics of social struc-
turing in animal populations.
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