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Abstract: Agent-based models return spatiotemporal information used to process time series of
specific parameters for specific individuals called “agents”. For complex, advanced and detailed
models, this typically comes at the expense of high computing times and requires access to important
computing resources. This paper provides an example on how machine learning and artificial
intelligence can help predict an agent-based model’s output values at regular intervals without
having to rely on time-consuming numerical calculations. Gradient-boosting XGBoost under GNU
package’s R was used in the social-ecological agent-based model 3MTSim to interpolate, in the
time domain, sound pressure levels received at the agents’ positions that were occupied by the
endangered St. Lawrence Estuary and Saguenay Fjord belugas and caused by anthropomorphic noise
of nearby transiting merchant vessels. A mean error of 3.23± 3.76(1σ) dB on received sound pressure
levels was predicted when compared to ground truth values that were processed using rigorous,
although time-consuming, numerical algorithms. The computing time gain was significant, i.e., it
was estimated to be 10-fold higher than the ground truth simulation, whilst maintaining the original
temporal resolution.

Keywords: agent-based models; machine learning; numerical solutions; underwater acoustic techniques

1. Introduction

Underwater transmission loss (TL) algorithms, such as RAM [1] or Bellhop [2], demand
high computational resources. Their integration within spatially explicit dynamic models,
such as agent-based models (ABMs), is expected to increase calculation times to evaluate
noise impact on marine mammals [3].

ABMs account for individual variability and interactions between two or more individ-
uals to simulate the dynamics of complex systems [4]. It has the advantage of assessing the
impact as a function of time of ad hoc hypotheses on individuals and capturing large-scale
emergent phenomena [5]. This, however, often comes at the expense of a high degree of
complexity being required for modeling the agents’ behavioral reactions and adaptations to
their environment [6]. Very subtle variations in initial conditions could lead to substantially
different results [7] and stochasticity could only be accounted for through a multi-run
configuration which, in turn, could be computationally costly.

In the context of acoustic impact assessment, ABMs dynamically account for animals’
exposure to underwater shipping noise [8]. In such applications, ABMs can include
multiple noise sources (e.g., ships, pleasure vessels, ferries) along with multiple animals
(e.g., from different whales species), requiring numerous calls of the TL algorithm during
the runtime to estimate the received noise levels (RL) by each animal from the multiple
remote underwater noise sources. Despite the wider accessibility of computing power,
strategies to speed up computation are still essential [9].
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This work provides a textbook example on how machine learning could help reduce
processing times of ABMs within reasonable method-induced errors. Our aims were the
following:

• to temporarily disable, for series of timesteps, the most costly modules (in terms of
computing resources) of an ABM simulator;

• to assess the performances of machine-learning methods to quickly interpolate, within
reasonable uncertainties, missing values (that resulted from the said modules’ impair-
ment) using fast-computed analytical approximations.

To clarify, the machine learning model developed here was strictly site-dependent, i.e.,
at St. Lawrence Estuary (SLE), and could not be used for other areas in the world. However,
any research group could exploit our numerical approach into training algorithms of their
own that could apply to their specific environment.

In Section 2, a description of our ABM simulator and its different modules is provided.
Machine-learning methods are described in Section 3. How acoustic metrics were retrieved
from our ABM simulator is discussed in Section 4. In Section 5, machine-learning methods
introduced in Section 3 were applied to the acoustic data obtained from our ABM simulator
in order to assess our efficiency in reproducing the acoustic field without having to rely ex-
clusively on time-consuming modules. Our approach is validated in Section 6 by applying
the machine-learning methods on series of simulations using different initial conditions.
Our findings are summarized in Section 7.

2. Marine Mammal and Maritime Traffic Simulator (3MTSim)

3MTSim is a social-ecological ABM representing the movements and interactions of
vessels and whales in the SLE and the Saguenay [10,11]. 3MTSim is spatially explicit and
simulates vessel and whale movement at 1 min intervals over periods that span from hours
to months. It can be compared to the probabilistic approach of the habitat-based model
developed by Aulanier et al. [12,13], which provides a much larger, generalized view of the
SLE’s acoustic budget at the expense of even larger computing times, resulting from the
computation of the sound propagation at every voxel of their computational volume.

The primary goal of 3MTSim is to test management scenarios to mitigate the impact
of marine traffic on whales [14,15]. Several modules of 3MTSim have already been de-
scribed [10,11,16,17], so we provided an overview below of the main modules that were
improved to come up with the version of the simulator used in this study.

The current version of 3MTSim is formed of four main modules (Figure 1) calibrated
and validated using multiple datasets (Table 1):

Table 1. Datasets used to inform the implementation of 3MTSim.

Dataset Reference Time Frame Description Module

Beluga photo ID GREMM 1989–2007
(June–October) Community and spatial structure Beluga population

Beluga photo ID GREMM 1989–2007
(June–October) Community and spatial structure Beluga population

Beluga VHF telemetry
tracking and diving

patterns

Fisheries and Oceans
Canada and GREMM 2001–2005 3D-movement patterns Beluga population

Tracking of beluga herds GREMM 1989–2017
(June–October)

Communities’ territorial
appropriation Beluga population

Beluga spatial distribution
from aerial surveys

Fisheries and Oceans
Canada 1990–2009 (August) Population summer spatial

distribution and high-density areas Beluga population

AIS data Canadian Coast Guard 2011–2018 Description of the marine traffic in
the beluga habitat Navigation

SIM data Innovation Maritime 2018–2019 Quantitative information on the
merchant fleet Navigation
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Table 1. Cont.

Dataset Reference Time Frame Description Module

Bathymetry Canadian Hydrographic
Service N.A.

2D chart providing depth values
across the simulator’s

computational area
(resolution = 100 m)

Navigation &
Acoustic

Seabed geoacoustic
properties [18,19] N.A. Geoacoustic properties retrieved

from the sediments’ nature Acoustic

Water column
geoacoustic properties OGSL 2004–2018 (summer)

(1) Temperature and salinity
profiles as a function of depth in

areas of interest (resolution = 1 m) Acoustic(2) Conversion in speed-of-sound
profiles as a function of depth

(3) Polynomial fitting of the
speed-of-sound profiles

MSL signatures of
merchant ships [20] N.A.

Frequency-dependent model
providing the amplitude of the
sound emitted by a source as a

function of the source’s static (e.g.,
length, width, draught) and
dynamic (speed) properties

Acoustic

Noise levels in the
summer habitat of the

beluga
[21] 2004–2005 Noise levels measured at a depth

of 15 m in different areas of interest Acoustic

Navigation
Movement and noise

• Merchant ships
• Cruise ships
• Whale-watching
• Ferries
• Pleasure crafts

Environment
• Bathymetry
• Tides
• Visibility
• Currents
• Navigation charts
• Acoustic propagation

Whales
Movement and behavior 

• Beluga (SLEB)
• Blue whale
• Fin whale
• Humpback whale
• Minke whale

Scenarios
- Traffic increase
- Management 
measures

Parameters
- Whale species 
abundance
- Whale species 
distribution

Output 

• Boat-whale cooccurrences
• Lethal collision risks
• Whale exposure to 

navigation noise
• Impacts on navigation 

operations (e.g. ship 
transit time)

Marine mammal and maritime traffic simulator
3MTSim

Figure 1. Overview of 3MTSim structure, inputs, and outputs. The simulator represents the main
components of maritime traffic and whale movements in the St. Lawrence Estuary and the Saguenay
River during the peak season of boat–whale interactions, from May to October. Ships and whale
agents could move freely on a continuous space with their positions being updated every minute.
The environment submodel was characterized by attributes (e.g., tides, visibility extent) and layers of
information such as bathymetry and the nature of sediments, with a 100 m spatial resolution. A large
amount of quality data were used to implement, calibrate and validate this ABM (see Table 1). For
whale-watching excursions, data included interviews with captains and over 2100 sampled excursions
for which GPS tracks, boat activities and neighbourhood composition (i.e., boats and whales) were
available. Regarding the model of whale movements, the data used included VHF and shore-based
tracking data, as well as transect-derived abundance.
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• Environment: this module was made of static (e.g., seabed composition) and dynamic
processes (e.g., tides), which are known to influence whales, vessels and acoustic propa-
gation.

• Vessels: the current version of the simulator included three broad categories of vessels,
namely ocean-going commercial ships, cruise ships and whale-watching vessels.
Ferry and pleasure craft submodules were in the development phase. Only ocean-
going commercial ships and cruise ships were included in the current study and
the simulated traffic was based on 2017 vessel movements obtained from AIS data
(Table 1).

• Whales: five species were included in 3MTSim, namely beluga, blue, fin, humpback
and minke whales. Only beluga whales were considered in this study and the datasets
used to build the data-driven movement model are presented in Table 1.

• Acoustic: 3MTSim included a model of large ships’ monopole source levels (MSL) [20]
and TL algorithms to cover the broad range of frequencies relevant to the beluga, i.e.,
see Collins [1]’s RAM for f . 1000 Hz and Porter and Liu [2]’s Bellhop for f & 1000 Hz.
The current study focused on low frequencies as they allow for isolating changes in
RL with shipping—the focal traffic component in the study—from those of smaller
watercraft. Moreover, high absorption and instrumentation challenges have led to
very limited development of medium to high frequency models of ships’ MSL [22].

In its current version and for the purpose of this study, 3MTSim estimated the broad-
band (BB) frequency-integrated instantaneous (dB re 1 µPa2) and cumulative levels (dB
re 1 µPa2·s over 24 h) of the low-frequency (between 11 and 1122 Hz) RL received by
individual belugas from large vessels in direct line of sight (i.e., without full-height under-
water landscape obtrusion). While belugas hearing is most acute at frequencies greater
than 1000 Hz, their audiogram also extends to low frequencies, e.g., with a sensitivity of
120 dB at 125 Hz [23]. Different scenarios of traffic intensity, noise mitigation and beluga
movement patterns could be examined using 3MTSim for their consequences on a beluga’s
vessel-generated underwater noise exposure levels.

Although the 3MTSim platform takes advantage of the simultaneous use of multi-
core processors in both the spatial and frequency domains, parallelization of the RAM
code itself, used at low frequencies, was not possible due to the loop-carried dependence
along the line of sight connecting ships and belugas. Computing times increased non-
linearly with increasing separation and higher frequencies towards 1 kHz, which required
larger numbers of computed modes. Given the complexity of the bathymetric, geoacoustic
and water-column properties in the SLE’s habitat (Table 1), the use of range-independent
models (e.g., inverse square-law dilution) for TL was certainly not recommended and a
proper management of the computing times quickly becomes a concern for vessel-to-whale
distances above 5 km and sound frequencies above 200 Hz.

3. The Gradient-Boosting Method (GBM)

The GBM [24] is a powerful tool in machine learning and has shown success across
various regression and classification problems. GBM comprises three components: a
desired objective function for the task at hand, a weak or a base learner to make initial
predictions for the task and an additional learner that is added iteratively to gradually
minimize the loss function using gradient descent. In order to define a weak or a base
learner, one can choose either a linear model, smooth model or decision trees; however,
most often these methods typically use decision trees of fixed size for the weak learner. A
decision tree partitions the space of input variables such that every tree split is defined
with an if-then rule over the given variable, thus naturally encoding and modeling the
interaction between different variables. For base learner, a small depth decision tree has
shown to perform reasonably well on many real world applications. For the additive
learner, several instances are fitted on a random subset of variables and the model with the
lowest error is selected. This process inherently ensures a sparse solution by omitting less
important variables.
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While we have used a GBM approach in our paper due to its wide applicability, one
can also explore deep learning networks. These deep networks might or might not improve
the performances, but we wanted to emphasize that the aim of this work was to use
machine learning as a tool (regardless of the method choice) to speed up ABM simulations.

In this work, we made use of the eXtreme Gradient Boosting (XGBoost) algorithm,
which is an efficient and scalable implementation of the gradient-boosting algorithm [25].

4. Acoustic Methods

The 3MTSim ground truth (GT) simulation was launched on 4 February 2021 at
17:55 (EST; UTC-5) and required 39.37 h to complete on an 8-core (16-thread) Intel(R)
Core(TM) i9-9900K 3.60 GHz with 64 Gb of access memory. The seed number for stochastic
effects was fixed at 10. A hundred (100) belugas were distributed within the species’ high-
residency areas (HRAs) of the SLE and allowed to move from one HRA to another in the
computational domain. The run was carried out for 7 simulation days with a temporal
resolution of 1 real-life minute timestep−1 (see Section 2). No data were computed for the
first day, that is from timesteps (or minutes) 0 to 1439, in order to avoid stochastic effects
associated with the simulation’s very early stages. Stochasticity during the early stages of
the simulation could lead to an under representation of the beluga whales in the Saguenay
river. The density population converged to values in agreement with eyesight observations
after one simulation day. Acoustic data were hence processed from timestep 1440 (i.e., the
start of day 2) to timestep 10,080 (i.e., the end of day 7). Table 2 lists the 20 1/3-octave bands
between 12 and 1000 Hz that were used to quantify the acoustic properties of the belugas’
surroundings in this work. Appendix A provides a description on how acoustical data
for each frequency band were computed in the 3MTSim platform, as well as the acoustic
terminology used in the following sections.

This works mainly focused on our ability to estimate, within reasonable efficiency,
the BB values predicted by the time-consuming RAM algorithm from the analytical model
provided by Gassmann et al. [26] (see Appendix A) using interpolations determined by the
machine-learning methods described in Section 3. A success in that matter would prove
to be immensely profitable in terms of computing efficiency given the large difference in
required resources between the two TL models described in this work. For simplification
arguments, we chose to only consider the acoustic contribution of the closest ship to the
animal. Any success in our approach would signify that our technique could also be
applied to the second, third, ..., kth closest ships in order to obtain a complete acoustical
portrait of the instantaneous noise sustained by the animal at a given timestep. Using
returned values from the second block in Table A1’s Panel (b), the 1112-element MSL vector
was reconstructed for the closest ship according to the Wittekind [20] model. Using the
bands’ TL values from the fourth and fifth blocks in Table A1’s Panel (a), the 1112-element
single-ship-contributor RL vectors were reprocessed and the two BB predictions for the
closest ship-to-animal encounter were computed from Equation (A4) (hereafter labeled as
clo-BBRAM and clo-BBGassmann).

Figure 2 provides the point-to-point comparison, for the GT simulation, of the clo-
BBRAM and clo-BBGassmann predictions in the form of a density plot. The agreement between
the two parameters was poor and we quickly concluded that the fast-computing Gassmann
model could not by itself reliably estimate the TL predicted by the numerically robust,
range-dependent RAM model in the complex underwater environment of the SLE territory.
Machine learning via a GBM approach was used to determine a model that would allow
the estimation of clo-BBRAM via values extracted for clo-BBGassmann.



J. Mar. Sci. Eng. 2022, 10, 899 6 of 16

Table 2. 1/3-octave bands.

Band Name Lower Band Limit Central Frequency Upper Band Limit

(Hz) (Hz) (Hz)

b01 11 12 13
b02 14 16 17
b03 18 20 21
b04 22 25 27
b05 28 32 35
b06 36 40 44
b07 45 50 55
b08 56 63 70
b09 71 80 88
b10 89 100 111
b11 112 125 140
b12 141 160 177
b13 178 200 223
b14 224 250 281
b15 282 315 354
b16 355 400 446
b17 447 500 561
b18 562 630 707
b19 708 800 890
b20 891 1000 1122

Figure 2. Density plot of the point-to-point comparison of the clo-BBGassmann vs. clo-BBRAM pre-
dictions for the GT simulation for timestep numbers between 1440 and 10,080. A total of 214,438
ship-to-animal pairs are displayed. A binsize of 1 dB was used to process the square map with colored
density levels between 0 and 500 counts.
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5. Data Processing

The upper half of the GT simulation (from timesteps 1440 to 5040; hereafter referred
to as the training subsample was used to train the GBM model. We reiterate to the reader
that the 3MTSim’s acoustic methods were disabled for the first day of simulation, from
timesteps 0 to 1439 (see Section 4). Values for clo-BBRAM that corresponded to timestep
numbers not divisible by 10 (e.g., 1441, 1442, 1443, ..., 2881, 2882, 2883, ..., 5037, 5038, 5039)
were considered as missing for the purpose of the analysis to follow. The GBM algorithm
used input variables (see Section 3) in order to develop a model that could reliably retrieve
these now missing values for clo-BBRAM from the training subsample.

The GBM’s input variables were as follows:

1. the clo-BBGassmann prediction, available at each timestep for each ship-to-animal
encounter;

2. a crude approximation of the clo-BBRAM prediction, referred to as BBlin.
RAM, and pro-

vided by the linear interpolation of the two closest, non-missing clo-BBRAM values
preserved, i.e., those with timestep numbers that were divisible by 10 (e.g., 1400, 1410,
1420, ..., 2880, 2890, 2900, ..., 5020, 5030, 5040);

3. a 20-element 1-D vector representing the bathymetric profile along the line of sight
connecting the ship and the animal. Giving that our bathymetric data had a resolution
of 100 m pixel−1 (see Table 1), any separation above 2000 m between a ship and a
beluga implied a spatial degradation of the bathymetric information used by 3MTSim.
We therefore expected that the uncertainty on the GBM output should increase with
increasing ship-to-animal separation.

The hyperparameters for XGBoost were found using grid search. For maximum depth
of tree and minimum child weight, we used the set [1, 3, 5, 7] and values [0.01, 0.05, 0.1, 0.3]
for step size shrinkage to prevent overfitting for performing the grid search. Additionally,
XGBoost randomly used subsets of the data to grow trees to avoid overfitting, with a
default value of 1, i.e., the entire data. We also used 0.65 and 0.8 values to randomly subset
data rows and 0.8 and 0.9 to randomly subset data columns in the grid search process. The
model was trained with 5000 rounds of the data and training terminated if the performance
did not improve for 10 rounds on the validation set.

The highest performing model during five-fold cross-validation was built using
18 trees, with a max tree depth of one, minimum child weight of three, and a learning rate
of 0.05. Hyperparameter selection also suggested that the model benefited from building
these trees on sub-samples of the data, where the highest performing model randomly
sub-sampled 65% of rows and 80% of columns when building trees.

Once training completed, the model was tested on the remaining lower half of the GT
simulation (from timesteps 5041 to 10,080; hereafter referred to as the testing sub-sample).
Figure 3 provided the clo-BBRAM vs. clo-BBGassmann relation in the (a) training and (b)
testing subsamples for timestep numbers not divisible by 10. Similarities between Figure 2
and Figure 3, and also between both panels (a) and (b) in Figure 3 simply indicate that both
the training and testing subsamples did not differ statistically from the whole simulation
(i.e., events happening during the first half of the simulation did not differ, from a statistical
point of view, from those happening during the second half).

The output, hereafter referred to as clo-BBINTERP, that resulted from the GBM applica-
tion was meant to be compared to clo-BBRAM in order to estimate the GBM reliability. This
comparaison between clo-BBINTERP and its clo-BBRAM counterpart is shown in Figure 4 for
the testing subsample. The average deviation from the line of perfect agreement was of
3.23± 3.76(1σ) dB re 1 µPa2 (Table 3).
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Figure 3. Density plot of the point-to-point comparison of the clo-BBGassmann vs. clo-BBRAM predic-
tions for (a) the upper half (or training subsample) of the GT simulation and timestep numbers not
divisible by 10 between 1440 and 5040 (see text), and (b) the lower half (or testing sub-sample) of the
GT simulation and timestep numbers not divisible by 10 between 5041 and 10,080 (see text). A binsize
of 1 dB was used to process the square maps with colored density levels between 0 and 250 counts.

Table 3. GT results and application/validation of additional runs.

Seed Start Date Local Time Computing Time Pairs Average Deviation

(hours) (dB re 1 µPa2)

GT 4 Feb 2021 17:55 39.37 214,438 3.23± 3.76(1σ)
20 9 Feb 2021 03:40 36.75 173,492 3.11± 3.72(1σ)
30 10 Feb 2021 17:05 36.25 172,175 3.24± 3.89(1σ)
40 12 Feb 2021 12:30 40.08 201,356 3.24± 3.84(1σ)
50 14 Feb 2021 12:40 41.02 198,940 3.13± 3.71(1σ)
60 16 Feb 2021 13:05 34.90 164,220 3.12± 3.76(1σ)

Appendix B provides an example on how clo-BBINTERP was processed and compared
to the RAM gold standard.
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Figure 4. Density plot of the point-to-point comparison of the clo-BBINTERP vs. clo-BBRAM predictions
following the application of the GBM model on the lower half of the GT simulation and timestep
numbers not divisible by 10 between 5041 and 10,080 (see text). A total of 102,868 ship-to-animal
pairs are displayed. A binsize of 1 dB was used to process the square map with colored density levels
between 0 and 588 counts.

6. Validation

To confirm that the GBM model developed in this work was not related to very
specific stochastic effects intrinsic to the GT simulation, it was tested on different 3MTSim
runs without additional training. Five additional runs were conducted using the same
configuration and computing resources as the GT simulation. Only the random seed
number was modified each time in order to assure different beluga trajectories and ship
patterns. The acoustic (see Section 4) and processing (see Section 5) methods remained the
same and 100% of each additional run was used as testing samples on the GBM model
obtained from the training of the upper half of the GT simulation (see Section 5). Results
are shown in Table 3.

Average deviations from the line of perfect agreement between clo-BBINTERP and
clo-BBRAM agree with what was previously obtained for the lower half of the GT simulation
and suggested that our GBM model was able to retrieve missing values for clo-BBRAM
within a reasonable precision of approximately 3 dB re 1 µPa2 on average. This was below
the 95% confidence-level uncertainty estimate of 4.8 dB re 1 µPa2 for a single dataset of sea
trial recordings reported by Sponagle [27], which gave credence to our results.

Giving that the computing resources required to process the 3MTSim simulator was
largely monopolized by the acoustic subroutine, a gain in computing time of approximately
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10 was expected since our approach implied a call to the time-consuming RAM algorithm
only once every 10 timesteps. This work provided tools for a full characterization of the
animals’ acoustic environment to the full extent of the simulator’s temporal resolution
(critical in order to properly assess the time-dependent sound exposure levels sustained by
each animal) without having to deal with unreasonable computing times, often a limiting
factor in the use of ABMs.

The GBM model obtained here could not be used in other environments although
the numerical approach described in this work was certainly replicable for other research
groups confronted with time constraints in ABM modelling.

7. Conclusions

Agent-based models can require high computational resources depending on the
complexity of the inner algorithms regulating the agents’ response to their environment.
The Marine Mammal and Maritime Traffic Simulator (3MTSim) describes the acoustical
habitat, mostly regulated by the merchant fleet, of the endangered beluga whales of the
St. Lawrence Estuary. In this work, the efficiency of machine learning to retrieve missing
acoustic values from the agent-based platform was explored.

Results of the time-consuming, loop-carried dependent RAM algorithm for transmis-
sion loss calculations were preserved only once out of 10 timesteps, hence leading to a
computational time gain of roughly 10. Interpolation of the missing (9 out of 10) values
was carried out using a trained gradient boosting model combined with easily calculable
metrics such as bathymetric profiles and analytical approximations for transmission losses.
Average deviations between the machine learning predictions and fully computed ground
truth values were estimated slightly above 3 dB re 1 µPa2.

This work showed the potential of machine learning in agent-based modeling to
significantly reduce computing times within reasonable uncertainties on output parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

3MTSim Marine Mammal and Maritime Traffic Simulator;
ABM agent-b model;
AIS automatic identification system;
BB broadband;
EST Eastern Standard Time;
GBM gradient-boosting method;
GREMM Groupe de Recherche et d’Éducation sur les Mammifères Marins;
GT ground truth;
HRA high-residency area;
MSLs monopole source levels;
OGSL Observatoire Global du Saint-Laurent;
RL received levels;
SIM Système d’Information Maritime;
SLE St. Lawrence Estuary;
TL transmission loss;
VHF very-high frequency;
XGBoost eXtreme Gradient Boosting algorithm.

Appendix A

Acoustical data in the ABM simulator were retrieved as follows.

1. At a given timestep, 3MTSim established if a direct line of sight existed between a
ship and an animal (see Section 2 for the definition for line of sight).

2. If so, for each central frequency in Table 2’s middle column, the ship’s MSLs were
calculated using its static and dynamic properties as described by Wittekind [20].

(a) These properties were as follows:

i. The cavitation inception speed (vCIS), which was fixed at 10 knots;
ii. The block coefficient (cB), which is the ratio of the ship’s underwater

volume to the volume of a rectangular block having the same overall
length (`), breadth (b) and depth/draught (d); calculation of the block
coefficient as a function of the ship’s length (`) and speed through water
(v) was provided by (Barrass [28] Chapter 1);

iii. The ship’s displacement (∆) in tons was provided by the mass of water
contained in a cB× `× b× d volume;

iv. A single (n = 1) resiliently mounted (E = 0) engine of mass m = 200 tons
was arbitrarily attributed to all ships.

(b) MSLs were assumed to be constant inside a given 1/3-octave band and, there-
fore, were split and equally re-distributed for each integer frequency in that
said band (i.e., in order that the integration across the band’s lower and upper
limits gave the initial 1/3-octave MSL prediction; see Table 2).

The result for Step 2 was a 1112-element 1-D vector, in units of dB Hz−1 re 1 µPa2,
providing the ship’s MSLs for each integer frequency between 11 and 1122 Hz.

3. TL along the line of sight connecting the ship to the animal was computed for each
central frequency in Table 2’s middle column. This was performed twice using the
following two distinct models.

(a) The split-step Padé approximation of the parabolic equation method [1]. The
RAM model was time-consuming but was numerically reliable and highly
range-dependent. Properties in bathymetry, sediments type and sound speed
gradients were implemented in the 3MTSim platform (see Table 1). The RAM
model provided TL in units of dB Hz−1 re 1 µPa2.
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(b) The analytical solution provided by Gassmann et al. [26] was given as:

TL = 10.0 × log10

 r2

2 ·
(

1− cos
(

4π f zszr
chmr

))
, (A1)

where r is the distance, in meters, separating the source from the receiver, f
is the sound frequency in Hertz, zs is the source depth (i.e., 70% of the ship’s
draught d according to ISO 17208-2 [29]) in meters, zr is the receiver’s depth in
meters and chm is the water’s mean sound speed, in m s−1 along the transect
connecting the source and the receiver.
Totally negligible in terms of computing time, Equation (A1) (hereafter referred
as the Gassmann model) corrected for sound attenuation attributed to surface
reflections (i.e., Lloyd’s mirror effects) but is range-independent and does
not consider variations of the geomorphological terrain and physico-chemical
properties along lines of sight connecting sources and receivers. The Gassmann
model also provided TL in units of dB Hz−1 re 1 µPa2.

TL was assumed to be constant inside a given 1/3-octave band and, therefore, predic-
tions were assumed equal for each integer frequency in that said band. The results for
Step 3 were two 1112-element 1-D vectors, in units of dB Hz−1 re 1 µPa2, providing
TL across the ship-to-animal transect for each integer frequency between 11 and 1122
Hz, one 1112-element 1-D vector for each of the two TL models discussed above.

4. Noise levels radiated at the source and received at the animal’s position were linked
by the passive SONAR equation:

MSL(φ, λ) = RL(φ0, λ0) + TL(φ, λ→ φ0, λ0), (A2)

where (φ,λ) and (φ0,λ0) are respectively the ship’s and animal’s positions and TL(φ,λ
→ φ0,λ0) is the TL sustained by the sound wave from (φ,λ) to (φ0,λ0).
From Equation (A2), subtraction of a TL vector (see Step 3) from the MSL vector
(see Step 2) yielded a 1112-element 1-D vector, in units of dB Hz−1 re 1 µPa2, of
the instantaneous sound pressure RL at the position of the animal for each integer
frequency between 11 and 1122 Hz, as predicted by the TL model used. For the
purpose of this work and sake of simplicity, sound absorption attributed to magnesium
sulfate and boric acid in seawater (see François and Garrison [30,31]) was ignored in
the computation of RL.

5. The RL calculation (see Step 4) was repeated for all k ships with direct lines of
sight with the animal during the said timestep. The individual 1112-element RL
contributions were then summed, frequency-by-frequency, as non-coherent sources
according to the following equation:

RLtot( f ) = 10.0 × log10

(
k

∑
i=1

10RLi( f )/10

)
. (A3)

Once Equation (A3) was carried out on all integer frequencies between 11 and 1122 Hz,
RLtot corresponded to a 1112-element 1-D vector, in units of dB Hz−1 re 1 µPa2, of
the instantaneous sound pressure RL predicted at the position of the animal and
attributed to all k ships with direct lines of sight at this timestep.

6. Integration over the frequency domain of the RLtot vector (see Step 5) provided the
BB measurement, in units of dB re 1 µPa2, between 11 and 1122 Hz of all noise
contributors with direct lines of sight to the position of the animal:

BB = 10.0 × log10

(
1122

∑
f=11

10RLtot( f )/10

)
. (A4)



J. Mar. Sci. Eng. 2022, 10, 899 13 of 16

At each timestep, for each animal exposed to at least one ship, two BB predictions
were computed; one obtained from the RAM TL model and the other from the analytic
TL approximation of Gassmann et al. [26] (see Step 3).

Table A1 lists the output parameters return by 3MTSim for each animal exposed to at
least one ship at each timestep (note that the TL values labeled .bXX in Panel (a) refer to the
specific bands listed in Table 2’s left-hand column).

Table A1. 3MTSim’s Output .txt Files.

(a) Whales’ Output .txt File.

Beluga ID number
Random seed
Timestep

XUTM of the whale
YUTM of the whale
Depth of the whale

BBRAM received by the whale
BBGassmann received by the whale

TLRAM.b01 from the closest ship only
· · · to · · ·
TLRAM.b20 from the closest ship only

TLGassmann.b01 from the closest ship only
· · · to · · ·
TLGassmann.b20 from the closest ship only

(b) Ships’ Output .txt File.

Beluga ID number
Random seed
Timestep
Number of ships with direct line-of-sight

XUTM of the closest ship
YUTM of the closest ship
Distance to the closest ship
Length of the closest ship
Width of the closest ship
Draught of the closest ship
Speed through water of the closest ship

XUTM of the second closest ship
· · · to · · ·
Speed through water of the second closest ship

XUTM of the third closest ship
· · · to · · ·
Speed through water of the third closest ship

XUTM of the fourth closest ship
· · · to · · ·
Speed through water of the fourth closest ship

XUTM of the fifth closest ship
· · · to · · ·
Speed through water of the fifth closest ship

Appendix B

This example was taken from the 9 February 2021 run (see Table 3). We followed
the beluga (agent) ID 77 for 20 min from timesteps 7220 to 7240. During this time, the
agent was exposed to a single merchant ship of length, width and draught, respectively
of 187, 31 and 8 m. Table A2 provides the agent’s and ship’s UTM positions, the agent’s
depth, the ship’s speed-through-water and the ship-to-agent distance during the period
of interest. At each timestep, the ship’s MSLs were computed according to the acoustic
methods introduced in Section 4 while the RAM algorithm and Gassmann approximation
were used independently to predict BB levels at the agent’s position. These predictions are
listed in Table A2’s last two columns.
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Column 9 in Table A2 shows that the ship was initially (7220) 4.1 km away from the
whale while moving in its direction. The closest point of approach was reached 7 to 8 min
later (7227–7228) with distances of 1.5 km. After which, the ship moved away from the
whale and the distances of separation increased to reach 13.1 km at the end (7240) of this
example.

Table A3 assumed that clo-BBRAM values were calculated only for timesteps 7220, 7230
and 7240, hence drastically reducing calculation times but leaving us with the task to fill
the gaps for timesteps not divisible by 10. As described in Section 5, input parameters
to the trained GBM model were, for these timesteps, the Gassmann approximation clo-
BBGassmann, the linear interpolation BBlin.

RAM using the two closest values for clo-BBRAM (here,
of +0.429 dB re 1 µPa2 per timestep between 7220 and 7230 and of −2.144 dB re 1 µPa2 per
timestep between 7230 and 7240) and a vector of 20 isometric segments between the ship
and agent providing the bathymetric profile, z1 being the height of the water column at the
ship’s position and z20 the height of the water column at the agent’s position. For obvious
aesthetic arguments, only z1 and z20 were provided in Table A3.

The GBM model returned the clo-BBINTERP value in the second-to-last column of
Table A3. That value could be compared to the clo-BBRAM standard in the second-to-last
column of Table A2. Differences are listed in Table A3’s right-hand column. In this example
for timesteps 7220 to 7240 of the 9 February 2021 run, uncertainties on the clo-BBINTERP
calculations as replacement values for dismissed clo-BBRAM were, on average, below 2 dB
re 1 µPa2 in absolute value for the estimation of the RL received by agent ID 77.

Table A2. Example—Agent’s and ship’s data.

Tick ID e-UTMagent n-UTMagent Depth e-UTMship n-UTMship Speed Distance clo-BBRAM clo-BBGassmann

(m) (m) (m) (m) (m) (knots) (m) (dB re 1 µPa2) (dB re 1 µPa2)

7220 77 497,624 5,361,030 1.0 493,200 5,360,600 16.11 4100 107.97 63.98
7221 77 497,947 5,360,968 1.0 494,100 5,361,300 16.19 3700 108.33 65.78
7222 77 497,991 5,360,993 1.0 495,000 5,361,900 15.94 3100 113.82 68.78
7223 77 498,524 5,361,345 1.0 495,900 5,362,500 16.38 2800 111.52 70.68
7224 77 498,815 5,361,989 1.0 496,800 5,363,100 16.04 2400 113.56 73.26
7225 77 499,011 5,362,451 1.0 497,700 5,363,700 16.10 2000 116.01 76.44
7226 77 499,536 5,363,255 1.0 498,500 5,364,400 16.17 1800 117.80 78.29
7227 77 499,656 5,364,058 1.0 499,400 5,365,000 16.02 1500 119.46 81.41
7228 77 500,132 5,364,392 1.0 500,300 5,365,600 16.10 1500 119.44 81.44
7229 77 500,754 5,364,353 1.0 501,200 5,366,200 16.30 2100 115.69 75.65
7230 77 501,482 5,364,384 1.0 502,100 5,366,800 16.08 2700 112.26 71.22
7231 77 501,904 5,364,473 1.0 503,000 5,367,400 16.09 3400 115.15 67.22
7232 77 503,203 5,364,544 1.0 503,900 5,368,000 16.09 3700 107.98 65.75
7233 77 503,548 5,364,437 1.0 504,800 5,368,600 16.19 4400 107.87 62.77
7234 77 504,280 5,364,252 1.0 505,700 5,369,200 16.21 5200 101.09 59.88
7235 77 504,656 5,364,348 1.0 506,600 5,369,800 16.26 5900 102.12 57.70
7236 77 505,210 5,364,303 1.0 507,500 5,370,400 16.25 6700 97.75 55.48
7237 77 505,798 5,364,046 4.0 508,500 5,371,000 16.95 7400 92.65 53.94
7238 77 505,024 5,363,184 8.0 509,400 5,371,600 16.16 8800 98.21 66.28
7239 77 504,457 5,362,150 8.0 510,300 5,372,200 15.38 11,400 96.14 64.05
7240 77 503,876 5,361,745 4.0 511,200 5,372,800 15.34 13,100 90.82 59.12
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Table A3. Example—GBM inputs and output.

Tick ID clo-BBGassmann BBlin.
RAM z1 · · · z20 clo-BBINTERP Deviation

(dB re 1 µPa2) (dB re 1 µPa2) (m) (m) (m) (dB re 1 µPa2) (dB re 1 µPa2)

7220 77 63.98 107.97 236 · · · 166 107.97 (+)0.00
7221 77 65.78 108.40 237 · · · 160 111.20 (+)2.87
7222 77 68.78 108.83 239 · · · 160 113.28 (−)0.54
7223 77 70.68 109.26 237 · · · 157 114.47 (+)2.95
7224 77 73.26 109.69 230 · · · 164 114.93 (+)1.37
7225 77 76.44 110.12 224 · · · 172 116.87 (+)0.86
7226 77 78.29 110.54 229 · · · 180 117.44 (−)0.36
7227 77 81.41 110.97 229 · · · 200 118.06 (−)1.40
7228 77 81.44 111.40 228 · · · 200 118.85 (−)0.59
7229 77 75.65 111.83 228 · · · 118 117.14 (+)1.45
7230 77 71.22 112.26 227 · · · 167 112.26 (+)0.00
7231 77 67.22 110.12 225 · · · 137 112.68 (−)2.47
7232 77 65.75 107.97 221 · · · 92 109.75 (+)1.77
7233 77 62.77 105.83 207 · · · 80 108.13 (+)0.26
7234 77 59.88 103.68 197 · · · 73 103.64 (+)2.55
7235 77 57.70 101.54 196 · · · 67 101.46 (−)0.66
7236 77 55.48 99.40 198 · · · 54 99.47 (+)1.72
7237 77 53.94 97.25 200 · · · 47 94.28 (+)1.63
7238 77 66.28 95.11 200 · · · 44 102.78 (+)4.57
7239 77 64.05 92.96 188 · · · 38 98.92 (+)2.78
7240 77 59.12 90.82 196 · · · 35 90.82 (+)0.00
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