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Many songbirds sing intensely during the early morning, resulting in a phenomenon known as the dawn chorus. We tested the hypo-
thesis that male Adelaide’s warblers (Setophaga adelaidae) warm up their voices during the dawn chorus. If warming up the voice is 
one of the functions of the dawn chorus, we predicted that vocal performance would increase more rapidly during the dawn chorus 
compared to the rest of the morning and that high song rates during the dawn chorus period contribute to the increase in vocal per-
formance. The performance metrics recovery time, voiced frequency modulation, and unvoiced frequency modulation were low when 
birds first began singing, increased rapidly during the dawn chorus, and then leveled off or gradually diminished after dawn. These 
changes are attributable to increasing performance within song types. Reduction in the duration of the silent gap between notes is 
the primary driver of improved performance during the dawn chorus. Simulations indicated that singing at a high rate during the dawn 
chorus period increases performance in two of the three performance measures (recovery time and unvoiced frequency modulation) 
relative to singing at a low rate during this period. These findings are consistent with the hypothesis that vocal warm-up is one benefit 
of participation in the dawn chorus.

Key words: bird song, dawn chorus, practice, vocal performance, warming up.

Many songbirds sing at elevated rates early in the morning. Several 
hypotheses attempt to explain the adaptive function of  the “dawn 
chorus” (Staicer et al. 1996; Gil and Llusia 2020). For example, 
birds may sing vigorously at dawn because (1) sound propagates 
further at dawn, (2) foraging is not profitable at dawn, (3) song 
re-establishes territorial claims at dawn, (4) females prospect for 
mates at dawn, or (5) they have extra energy they did not spend the 
night before (Staicer et al. 1996; Gil and Llusia 2020). It is possible 
that the dawn chorus serves multiple functions, within and among 
species. In the present study, we test Schraft et al.’s (2017) hypo-
thesis that participation in the dawn chorus plays an important role 
in “warming up” the vocal apparatus.

We use the term “warm-up” to describe improvement in per-
formance due to recent practice (Schraft et al. 2017; Déaux et 
al. 2020; Dinh et al. 2020). Various physiological process(es) 
might cause such a change in performance. For example, physical 

warming might underlie behavioral warm-up by increasing the 
speed of  nerve conduction or metabolic reactions (Bishop 2003a, 
2003b; Tan and Knight 2018). A prediction of  that hypothesis is 
that performance will be lower at low temperature.

We define performance as an adaptive approach to a behav-
ioral limit (Podos 1997). Studies show that warm-up improves 
performance in human (Homo sapiens) singers and athletes (Amir 
et al. 2005; Fradkin et al. 2010). Recent evidence suggests that 
singing birds’ vocal performance also improves after warming up 
(Schraft et al. 2017; Dinh et al. 2020). The need to warm up the 
voice may be an important constraint on vocal signaling in birds 
because vocal performance influences responses from both male 
and female signal receivers (Podos and Sung 2020). According 
to the warm-up hypothesis, ancestral birds that warmed up their 
voices in the morning by singing at high rates had a competitive 
advantage over those that did not, sparking an evolutionary arms 
race that drove elaboration of  the dawn chorus (Schraft et al. 
2017).
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The first study to link the dawn chorus to improvements in vocal 
performance showed that frequency excursion (FEX)—which 
measures the speed of  frequency modulation in both notes and si-
lent gaps within songs (Podos et al. 2016)—increases with the cu-
mulative number of  songs that a male Adelaide’s warbler (Setophaga 
adelaidae) sings over the course of  the morning (Schraft et al. 2017). 
That study relied on a linear model, so it did not provide a detailed 
description of  changes in vocal performance over the course of  the 
morning. If  the dawn chorus functions as a warm-up period, we 
expect that performance will be low when birds first start singing, 
increase rapidly during the dawn chorus, and level off after the end 
of  the dawn chorus. In the present study, we replaced the wholistic 
performance metric FEX with three fine-grained performance met-
rics (voiced frequency modulation, unvoiced frequency modulation, and recovery 
time), each of  which attempts to describe the performance of  a par-
ticular class of  vocal gestures (Goller 2022).

Constrained relationships between the acoustic properties of  
vocal signals can reveal the axes of  vocal performance. Singing re-
quires rapid, precise changes in the syrinx, respiratory system, and 
upper vocal tract (Nowicki et al. 1992; Catchpole and Slater 2003; 
Podos and Nowicki 2004). Constraints on the speed, precision, or 
coordination of  these physiological changes set limits on song struc-
ture (Hoese et al. 2000; Podos and Nowicki 2004; Plummer and 
Goller 2008). Logue et al. (2020) described performance constraints 
in Adelaide’s warbler at the note level, where notes are uninter-
rupted sound units.

The following example illustrates how acoustic trade-offs can 
provide evidence of  note-level performance constraints. If  there is 
a constraint on the speed that an Adelaide’s warbler can modulate 
the fundamental frequency of  a note, then at the limit of  perfor-
mance, notes with large frequency bandwidths will be longer in 
duration than notes with small frequency bandwidths (Logue et al. 
2020). A scatterplot of  duration versus frequency bandwidth would 
reveal a roughly triangular distribution in which the hypotenuse 
represents the constrained edge of  the distribution (Podos 1997). 
Quantile regression can be used to estimate the performance limit 
(the solid line in Figure 1), making it possible to calculate the or-
thogonal distance (“deviation score”) between a sound and the per-
formance limit in acoustic space (Figure 1; Podos 2001; Wilson et 
al. 2014). Deviation scores are inverse measures of  performance, so 
low scores indicate high performance and vice versa (Podos 2001).

Logue et al. (2020) used note-level acoustic constraints to calcu-
late three axes of  vocal performance in Adelaide’s warblers’ songs: 
recovery time, voiced frequency modulation (voiced FM), and un-
voiced frequency modulation (unvoiced FM). Recovery time is the de-
viation score from a plot of  note duration versus the duration of  the 
subsequent silent gap (gap duration). At the limit of  performance, 
longer notes require longer subsequent gaps, presumably because 
birds require long mini-breaths to replenish the air that they ex-
haled singing a long note (Hartley and Suthers 1989; Suthers and 
Zollinger 2004; Cardoso et al. 2007). Recovery time is strongly cor-
related with the song-level performance metric “percent of  sound” 
(a.k.a., “acoustic density”; Cardoso et al. 2009; Logue et al. 2020). 
The performance axis voiced FM describes the speed with which 
birds can change frequency while voicing a note. It is the devia-
tion score from a comparison of  frequency bandwidth (note BW) 
and duration (note duration; Logue et al. 2020). Similarly, the metric 
unvoiced FM describes the speed with which birds can change fre-
quency while they are not voicing a note. It is the deviation from 
a plot of  the frequency bandwidth of  silent gaps (gap BW) versus 
the gap duration (Geberzahn and Aubin 2014). Voiced and unvoiced 

FM are constrained because birds require more time to make 
large frequency jumps than small ones, indicating a limit to the 
speed of  frequency modulation. In the present study, we use these 
three metrics and the simple acoustic variables that underlie them 
to characterize changes in vocal performance during morning 
singing.

Our study tests the hypothesis that the dawn chorus functions 
to warm up the voice. Relative to the previous study of  vocal 
warm-up in Adelaide’s warbler (Schraft et al. 2017), we used a 
larger dataset, more granular measures of  performance (Logue et 
al. 2020), and a modeling approach that reveals fine-scale changes 
in performance over time. If  participation in the dawn chorus 
functions to warm up the voice, we predict that (1) vocal perfor-
mance will increase more rapidly during the dawn chorus com-
pared to later in the morning and (2) singing at a high rate during 
the dawn chorus period will lead to higher vocal performance after 
dawn.

METHODS
Study species

Adelaide’s warbler is a tropical, year-round territorial, socially 
monogamous New World warbler (family: Parulidae), endemic to 
Puerto Rico and nearby islands (Toms 2020). Males sing reper-
toires of  22.6 ± 2.6 song types (STs), all of  which are frequency-
modulated trills (Figure 2; Staicer 1992). Each song comprises 23.8 
± 4.7 notes (unpublished analysis from Logue et al. 2020).

Recording and annotation

We studied a population of  Adelaide’s warblers at the Cabo 
Rojo National Wildlife Refuge (U.S. Fish and Wildlife Service; 
17.98° N, 67.17° W) in western Puerto Rico from March 3 to 
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Figure 1.
Scatterplot of  a hypothetical constrained relationship between two traits. 
The black line is the 10th quantile regression line used to estimate a 
performance limit. The deviation score is the orthogonal distance between 
each data point and the performance limit. Figure reproduced from Logue 
et al. (2020) with the authors’ permission.

622

D
ow

nloaded from
 https://academ

ic.oup.com
/beheco/article/34/4/621/7140380 by U

niv of C
algary Lib user on 05 Septem

ber 2023



Vazquez-Cardona et al. • Vocal warm-up during the dawn chorus

June 19, 2012 and from April 13 to May 6, 2017. These dates 
are within the population’s breeding season (Staicer 1992). Birds 
were captured with acoustic lures and mist nets and fitted with 
unique combinations of  plastic colored leg bands and U.S. 
Fish and Wildlife Service metal leg bands for identification. 
Recordings were made with Marantz PMD-661 digital recorders 
and Sennheisser ME67 “shotgun” microphones (file format = 
wav, sampling rate = 44.1 kHz, bit depth = 16 bits). Observers 
continuously recorded mated males from 45 min before sunrise 
until approximately 2.5 h after sunrise (n = 9499 songs from nine 
males in 2012 and n = 16,381 songs from 18 males in 2017). The 
recordist visually confirmed the identity of  the focal male by the 
end of  each recording session.

Trained observers annotated the field recordings. Annotators 
visualized the recordings from 2012 in Syrinx PC v  2.6 (Burt 
1995–2006) and entered data into a spreadsheet. Data included 
all songs from the focal birds, and the ST to which they belonged. 
Annotators scored ST by comparing each song spectrogram to 
spectrograms of  the known repertoire of  the focal bird. After 
all scoring was complete, one observer (author D.M.L.) reviewed 
all STs. It is straightforward to assign songs to STs within an 
individual’s repertoire, and all our analyses treat ST as a within-
individual variable. Data from the 2012 recordings were used pre-
viously in Schraft et al. (2017); Hedley et al. (2018); Kaluthota 
et al. (2019); and Logue et al. (2020). The recordings from 
2017, which are unique to this study, were annotated in Raven 
Pro 1.6.1 (Center for Conservation Bioacoustics 2019). The in-
itial round of  ST scoring followed the 2012 protocol. After the 
scoring was complete, one observer (author P.C.M.) reviewed all 
STs. Annotators scored the time of  song delivery in 5-s increments 
(e.g., 05:36:00, 05:36:05, etc.) for the 2012 recordings, but they 
scored exact times for the 2017 recordings. We standardized tem-
poral precision across recording years by binning the 2017 dataset 
into 5-s intervals.

This study adheres to the guidelines from the Institutional 
Animal Care and Use Committee at the University of  Puerto 
Rico, Mayaguez (September 17, 2010) and the Animal Welfare 
Committee at the University of  Lethbridge (protocol #1605). It 
also follows the ASAB/ABS Guidelines for the use of  animals in 
research. Fieldwork was conducted with permission from the U.S. 
Fish and Wildlife Service (permits 2012-01, 41521-2016-11) and 
the Departamento de Recursos Naturales y Ambientales (permit 
2016-IC-068-1). Bird handling was conducted under D.M.L.’s 
master bird banding license (no. 2399).

Acoustic analysis

We acoustically analyzed a subset of  songs from the recordings. 
For the 2012 recordings, we analyzed all songs with sufficiently 
high signal-to-noise ratios (n = 2879 songs). For the 2017 record-
ings, we attempted to randomly select ten songs from each hour 
of  recording. For both years, our threshold for selection was that 
no other loud sounds overlapped the song, and that the notes of  
the song were sufficiently loud relative to the background noise that 
Luscinia could detect them. For hours that did not include ten song 
recordings with sufficiently high signal-to-noise ratios, we sampled 
as many as were available (n = 888 songs sampled).

We conducted acoustic analysis in Luscinia v  2.14 (Lachlan 
2007; Settings: max. freq. = 10 kHz, frame length = 5 ms, time 
step = 1 ms, dynamic range = 35 dB, dynamic equalization = 100 
ms, de-reverberation = 100%, de-reverberation range = 100 ms, 
high pass threshold = 1.0 kHz, noise removal = 10 dB). Luscinia 
applies de-reverberation and noise removal algorithms to the 
sound prior to note identification (personal comment R. Lachlan). 
We chose conservative de-reverberation and noise removal param-
eters that appeared to reduce reverberation and noise without af-
fecting the notes. Trained scorers used a stylus and a touchscreen 
monitor to highlight all visible notes on a spectrogram. Luscinia’s 
algorithm then searched within the highlighted area for pixels that 
exceed an amplitude threshold, which is defined by the dynamic 
range parameter (35 dB in the present analysis). The algorithm 
then adds neighboring pixels to the growing note until it encoun-
ters either the edge of  the highlighted area, or the amplitude falls 
below the cutoff.

We extracted the following metrics at the note level: maximum 
peak frequency (highest peak frequency in the note), minimum 
peak frequency (lowest peak frequency in the note), note start 
time, note end time, peak frequency at the beginning of  the note, 
and peak frequency at the end of  the note. Peak frequency is the 
frequency with the highest amplitude in the sample window. In 
Adelaide’s warbler songs, the peak frequency is the fundamental 
frequency.

Variables

Note start and end times were used to calculate the duration of  the 
notes (note duration) and the silent gaps after each note (gap duration). 
We calculated the frequency bandwidth of  the notes (note BW) as 
the ratio of  the maximum and minimum peak frequency of  the 
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Figure 2.
Sound spectrograms of  four song types from male Adelaide’s warblers (Hann window, 512 points/sample).
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note (Cardoso 2013; Logue et al. 2020). Similarly, we calculated gap 
BW as the ratio of  the peak frequency at the end of  one note and 
the beginning of  the next note, with the larger value in the numer-
ator (Logue et al. 2020). We excluded the final note of  each song 
from the analysis because it lacks a gap BW and gap duration.

We calculated deviation scores for three performance metrics. 
We first generated three scatterplots with all data from 2012 and 
2017 (note duration vs. gap duration, note BW vs. note duration, and gap 
BW vs. gap duration) and ran mixed quantile regressions with Bird ID 
as a random term (Logue et al. 2020). Quantile regression estimates 
a quantile (specified by the parameter tau) of  y conditional on x. 
The goal of  this analysis is to produce a regression line that par-
allels the constrained edge of  the distribution, and the value of  tau 
that best achieves this goal depends on the shape of  the data cloud. 
Previous work on this population set tau = 0.10 (Logue et al. 2020), 
but we set tau = 0.05 to better fit the data. The resulting quan-
tile regression lines that represent the performance limits are de-
scribed in the Electronic Supplementary materials (Supplementary 
Table S1, Figure S1). Quantile regression can produce imprecise 
estimates of  performance limits (Cardoso 2019; Logue et al. 2020). 
Our data were not amenable to analysis with double quantile re-
gression (Cardoso 2019; see “On Double Quantile Regression” in 
Supplementary materials).

We calculated the deviation score for a given note as the or-
thogonal distance between the note and the performance limit, 
so lower deviation scores indicate higher performance (Figure 
1; Podos 2001). We averaged the deviation scores over the notes 
within a song because we were interested in how performance 
changes at the level of  the whole song. For the sake of  clarity, we 
refer to songs that closely approach the performance limit (i.e., 
songs with low deviation scores) as “high performance” songs. 
We also multiplied the Y-axes by −1 on the figures so that higher 
values indicate higher performance. We measured Pearson’s cor-
relation for each deviation score and the acoustic variables that 
contribute to it. We tested whether simple acoustic variables 
might be better metrics of  performance than deviation scores, by 
examining correlations among acoustic variables and testing their 
skewness, which can indicate constraint (Cardoso 2017; Logue et 
al. 2020).

We used time relative to sunrise (Time) to test predictions of  the 
hypothesis that male Adelaide’s warblers warm up their voices 
during the dawn chorus. We calculated time relative to sunrise as 
the difference between the time of  the song and the time of  sun-
rise. Sunrise times were obtained from timeanddate (Thorsen 1995-
2022). We included the cumulative number of  songs that a bird 
had sung over the course of  the morning (Order) in our models to 
account for variation in song rate (Schraft et al. 2017). We used 
air temperature (Ta) and relative humidity (RH) as covariates 
because these variables affect thermoregulation in endotherms 
and may affect warm-up (McKechnie and Wolf  2019; Levesque 
and Marshall 2021). Our weather data came from the University 
of  Utah’s MesoWest weather station at our field site (17.97 ° N, 
67.16 ° W; The University of  Utah n.d.). The weather station 
reports Ta and RH data once per hour to an accuracy of  ± 
0.6°C and 0–80%—±2.00% at 25°C. We weight-smoothed these 
parameters to interpolate between hourly records. We used the 
National Oceanic and Atmospheric Administration weather 
station data in Lajas, Puerto Rico (18.10 ° N, 67.10° W) to val-
idate the data from the MesoWest station (Vazquez-Cardona 
2021). Finally, we used the ordinal number of  the day in the year 
(OD) as a covariate.

Statistical analysis

Our statistical analysis follows the approach described by McElreath 
(2020). All analyses were conducted in R x64 4.1.0 (R Core Team 
2018). Descriptive data are summarized in Supplementary Table S2.

Model construction occurred in two steps. First, we used net-
works of  causal inference known as directed acyclic graphs (DAGs; 
Supplementary Figure S2) to choose predictor variables that isolate 
the direct effects of  interest and avoid confounds (Westreich and 
Greenland 2013; McElreath 2020). Nodes in this network repre-
sent variables and their directed edges (arrows) represent causal 
influence (McElreath 2020). DAGs are useful because they make 
causal hypotheses explicit and reveal hidden confounds. The use 
of  DAGs in model construction is unlike some popular model se-
lection procedures (e.g., stepwise, information-based), because the 
main effects to include in the model are chosen a priori by the in-
vestigator, rather than by an algorithm. The goal of  our analysis 
is to characterize the causal relationship between the dawn chorus 
(represented by Time) and vocal performance, while controlling for 
weather, the number of  songs sung, and the day of the year. We ap-
plied the adjustmentSets function from the R package DAGitty (Textor 
et al. 2016), to confirm that our models can characterize the direct 
effect of  Time on performance without confounds.

We then used information-based model selection to choose from 
a set of  biologically plausible interaction terms. We began by con-
sidering all possible two- and three-way interactions and identifying 
those that we deemed biologically plausible. We determined there 
were four biologically plausible two-way interactions (Ta * RH, 
Time * Order, Ta * Time, and Ta * Order) and one plausible three-
way interaction (Ta * Time * Order). We considered these interactions 
plausible because (1) Ta and RH may interact to affect thermoregu-
lation with consequences for vocal performance, (2) Time and Order 
may interact if  song rate (songs/time) influences performance, (3) 
Ta and Time may interact if  the effect of  temperature on perfor-
mance varies over the course of  the morning (e.g., if  high temper-
ature influences performance more strongly early in the day), (4) 
Ta and Order may interact if  the effect of  temperature depends on 
how many songs the bird has sung, and (5) Ta, Time, and Order, may 
interact if  the effect of  temperature on performance depends on 
song rate (the interaction of  Time and Order). For each dependent 
variable, we ran models with all combinations of  the five biolog-
ically plausible interactions. We interpreted and visualized results 
for the converging models with the lowest Watanabe–Akaike in-
formation criterion (WAIC), and also considered any other models 
with ΔWAIC ≤ 2.0 (Supplementary Table S3).

We used the brms package to build hierarchical Bayesian models 
with Gaussian distributions (Bürkner 2018). All independent vari-
ables were fitted as splines to permit non-linear relationships. 
Examination of  variance inflation factors revealed no evidence of  
strong multicollinearity (Kutner et al. 2005; Supplementary Table 
S4). We standardized all predictor variables: Ta, RH, Time, Order, 
and OD prior to analysis. We also standardized the dependent 
variables (performance metrics and simple acoustic traits) to facil-
itate comparison among them. We included Year and ST nested 
within individual (Bird ID) as random effects to control for the non-
independence of  performance within year, ST, and individual. The 
inclusion of  ST as a random variable means that any observed trend 
in performance should be interpreted as variation within, rather 
than among, STs. Since each ST in a male’s repertoire belongs to 
a single song category, the random term ST also controls for vari-
ation attributable to song categories (Staicer 1992; Kaluthota et al. 
2019). Our Markov chain Monte Carlo conditioning engine used 
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four chains and 3500 iterations to estimate posterior distributions. 
We used priors centered on 0, which set the models’ initial state to 
assume the independent variables have no effect on the dependent 
variable (McElreath 2020). We validated model fits with posterior 
predictive checks and R-hat values (see Supplementary Figure S3 
and R-hat in Supplementary materials; Gelman and Hill 2006; 
Gelman and Shirley 2011).

For all three dependent variables, we interpreted model variant 
#16, which included the interaction terms Ta * Time, Ta * RH, and 
Time * Order and the main effect OD (Supplementary Table S3). 
Nine out of  the 60 models (15%) did not converge. Of  the models 
that did converge, model variant #16 had the lowest WAIC for re-
covery time and voiced FM. An otherwise-identical model (#17) that 
combined Ta, Time, and Order in a three-way interaction, had a 
slightly lower WAIC value (ΔWAIC = −0.8) for unvoiced FM, but the 
results were qualitatively identical to those of  model #16. Similarly, 
model #12 for voiced FM (ΔWAIC = 1.9) had qualitatively iden-
tical results to model #16. For the sake of  simplicity, we interpreted 
model variant #16 for all three dependent variables and the simple 
acoustic traits that comprise them.

We visualized the results in several ways. Plots of  the condi-
tional effects of  Time on performance allowed us to visualize var-
iation in performance over time in a way that accounts for the 
effects of  covariates and random terms. To check the robustness 
of  our findings, we used the geom_smooth function from the ggplot2 
package (Wickham 2016) to plot generalized additive models with 
cubic splines that estimate mean performance over Time without 
accounting for covariates or random terms. Certain conditional ef-
fects can be difficult to interpret in models that incorporate splines 
and interactions (McElreath 2020). For these effects, model predic-
tions often paint a clearer picture of  the consequences of  varying 
the independent variables. We, therefore, entered simulated data 
into the conditioned models and visualized the output to charac-
terize the effects of  song rate on vocal performance. Specifically, 
we compared a simulated bird that sings at the average post-dawn 
rate (avg. based on full dataset = 0.6 songs/min) throughout the 
whole morning to a simulated bird that sings at the average dawn 
chorus rate (4.8 songs/min) before dawn, then switches to the av-
erage post-dawn rate 7 min after dawn, when the dawn chorus typ-
ically ends (Kaluthota et al. 2019).

RESULTS
The conditional effects of  time on performance showed that male 
Adelaide’s warblers’ vocal performance was at its lowest when they 
first began to sing and increased during the dawn chorus (blue lines 
in Figure 3). Recovery time and unvoiced FM increased rapidly during 
pre-dawn singing and then gradually decreased after sunrise (Figure 
3a, c). The conditional effect of  Time on Voiced FM increased during 
pre-dawn singing, held steady after sunrise, and began to increase 
again at 80 min after sunrise (Figure 3b). The conditional effects 
of  Time on recovery time and voiced FM include strong slopes near the 
end of  the sampling period (Figure 3a, b). We have low confidence 
in the veracity of  these terminal slopes because data are sparse and 
credible intervals are wide near the end of  the sampling period, 
and because the terminal slopes are not present in the estimates 
of  performance based on time alone. A comparison of  the condi-
tional deviation scores from the beginning of  the dawn chorus (41 
min before sunrise) to those at the end of  the dawn chorus (7 min 
after sunrise), reveals a large change in recovery time (59.5% reduc-
tion in deviation score) and unvoiced FM (56.6%), and a moderate 

change in voiced FM (29.4%). Like the conditional effects, the 
curves based on performance data alone show that performance 
begins low, increases rapidly during the dawn chorus, and levels 
out after dawn (orange lines in Figure 3). In theory, an increase 
in singing amplitude alone could produce spurious evidence of  
improving performance. We tested this hypothesis and concluded 
that it cannot explain the patterns in our data (“On Amplitude” in 
Supplementary materials).

The simulations predicted that singing at an elevated rate would 
cause a 37.5% improvement in recovery time, a 4.0% reduction in 
voiced FM, and a 20.2% improvement in unvoiced FM over the course 
of  the dawn chorus period (Figure 4).

There was evidence that Ta had a small effect on performance. 
Recovery time and unvoiced FM peaked at intermediate Tas (Figure 5a, 
c). Conversely, voiced FM was at its lowest at intermediate Tas and 
increased at higher temperatures, but this trend should be viewed 
with caution because data are sparse at high Ta (Figure 5b). Recovery 
time and unvoiced FM increased in an approximately linear manner 
with Order (Figure 6a, c). Voiced FM, however, tended to decrease 
slightly as birds sang more songs (Figure 6b). The effect of  RH and 
OD on vocal performance were weak, so we do not discuss them 
further (Supplementary Figures S4 and S5).

The conditional effects of  Time on the simple acoustic traits 
showed that both gap duration and, to a lesser degree, note duration 
decreased during the dawn chorus and started to increase after sun-
rise (Supplementary Figure S6a, b). Gap BW and especially note BW 
narrowed during the dawn chorus and then started to broaden after 
sunrise (Supplementary Figure S6c, d). Order did not have strong 
independent relationships with any simple acoustic traits except for 
a negative relationship with gap duration (Supplementary Figure S7). 
The estimated effects of  Ta, RH, and OD on the simple acoustic 
traits were weak (Supplementary Figures S8–S10). Song rate simu-
lations using the simple acoustic traits predicted that singing with 
an elevated rate during the dawn chorus period resulted in songs 
with shorter gap duration, and narrower gap BW than birds that do 
not participate in the dawn chorus (Supplementary Figure S11a, c). 
The simulation predicts only a slight difference in note BW and no 
difference in note duration between birds that do and do not partici-
pate in the dawn chorus (Supplementary Figure S11b, d).

Recovery time was highly correlated with gap duration (r = 0.94) and 
moderately correlated with note duration (r = 0.24). Voiced FM was 
highly correlated with note duration (r = 0.98), but very weakly correl-
ated with note BW (r = 0.02). Unvoiced FM was highly correlated with 
gap duration (r = 0.96), and moderately correlated with gap BW (r = 
−0.25). All measured variables were positively skewed. The skew-
ness of  deviation scores (recovery time = 3.44, voiced FM = 1.28, and 
unvoiced FM = 2.48) exceeded that of  the simple acoustic variables 
that comprised them (note duration = 1.11, gap duration = 2.44, note 
BW = 0.48, and gap BW = 0.57; note that gap duration does not con-
tribute to voiced FM).

DISCUSSION
We modeled the effects of  time of  day and song rate on vocal 
performance to test the hypothesis that male Adelaide’s warblers 
warm up their voices during the dawn chorus. Our key finding 
was that vocal performance was at its lowest when the birds begin 
singing, increased rapidly during the dawn chorus, and then lev-
eled off when the dawn chorus ended (Figure 3). This finding was 
robust, occurring in all three performance metrics, with or without 
covariates and random variables. The trend appears in models with 
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Figure 3.
Plots showing the effect of  time relative to sunrise on the acoustic performance variables (a) recovery time, (b) voiced frequency modulation, and (c) unvoiced frequency 
modulation in male Adelaide’s warbler song. The signs of  the performance variables are standardized and multiplied by −1, so high values indicate high 
performance. Each graph shows the songs (semi-transparent black dots), time of  sunrise (vertical gray line), estimated mean performance based on vocal 
performance alone (orange line), and conditional effect of  time on performance after accounting for covariates and random terms (curved blue line; shading 
= 95% CI). The dawn chorus is visible as a dense cloud of  points that ends shortly after dawn.
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Figure 4.
Plots of  simulated data comparing the expected distribution of  (a) recovery time, (b) voiced frequency modulation, and (c) unvoiced frequency modulation over the course 
of  the morning when birds do (blue) or do not (orange) sing at an elevated rate during the dawn chorus period. We standardized the performance variables 
and multiplied them by −1, so high values indicate high performance. Graphs show the time of  sunrise (vertical gray line).
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the random variable ST, indicating that it is driven by changes in 
performance within, rather than between, STs. It appears that the 
birds’ voices “cool down” overnight when they do not sing, and 
warm up again during the dawn chorus, supporting a key predic-
tion of  the warm-up hypothesis.

If  elaboration of  the dawn chorus is an adaptation to warm up 
the voice, we expect that high song rates, which characterize the 
dawn chorus, should promote increased performance. Using linear 
models, Schraft et al. (2017) found that the cumulative number of  
songs sung positively influenced performance, but time of  day neg-
atively influenced performance. Those findings suggest that song 
rate (songs/time) may be a key driver of  warm-up in vocal perfor-
mance. Our models predicted that singing at a high rate during the 
dawn chorus period and then switching to a low song rate resulted 
in higher recovery time and unvoiced FM after dawn than did singing at 
a constant low rate throughout the morning (Figure 4a, c). We also 
found that both Time and Order positively influence recovery time and 
unvoiced FM performance (Figure 6a, c). Collectively, the song rate 
simulations and conditional effects of  Time and Order are consistent 
with the idea that song rate plays an important role in vocal warm 
up.

It may be useful to think of  performance as being influenced by 
“vocal performance potential” (VPP), which encompasses all the 
physiological substrates that promote vocal performance. Unlike 
“performance” itself, VPP can change even when the animal is 
not signaling. VPP may exceed observed performance if  an animal 
chooses to signal with low performance when it could signal with 
high performance. We hypothesize that VPP can be improved (up 
to some point) by singing at a high rate. When birds do not sing, or 
sing at low rates, VPP tends to decrease gradually, until it reaches 
some lower limit. The finding that ruffed grouse (Bonasa umbellus) 
drumming performance decreases after animals take a break from 
displaying is consistent with the idea that display rate influences 
performance potential (Déaux et al. 2020). Similarly, human soccer 
players that re-warm up during half  time exhibit higher sprint per-
formance than players that rest (Mohr et al. 2004). Other variables, 
such as anatomy (Podos 2001), temperature (Figure 5), hormone 
levels (Pasch et al. 2011), and fatigue (Brumm and Slater 2006; 
Pasch et al. 2011), may also affect VPP.

Fatigue is particularly interesting if  it trades off with warming up 
to shape the duration or intensity of  the dawn chorus. Most current 
evidence, however, does not support this hypothesis. Schraft et al. 
(2017) did not find evidence that singing the same ST repeatedly 
induces fatigue in Adelaide’s warblers (Lambrechts and Dhondt 
1988). Similarly, recovery time and unvoiced FM tend to improve with 
the cumulative number of  songs produced (Figure 6a, c). The best 
existing evidence that fatigue affects performance in Adelaide’s 
warblers is the slight decrease in voiced FM over song order (Figure 
6b). It would be useful to conduct a study that directly measures or 
manipulates song rate to examine its effects on fatigue.

We saw decreases over the course of  the dawn chorus in all four 
of  the simple acoustic variables on which our performance metrics 
were based (Supplementary Figure S6). During the dawn chorus, 
songs became faster overall (shorter note duration and gap duration) 
and their bandwidth narrowed (lower note BW and gap BW). While 
the songs got faster overall as males warmed up their voices, the 
duration of  the silent gaps decreased faster than that of  the notes, 
resulting in an increase in sound density (a.k.a., percent of  sound; 
Cardoso et al. 2009; Logue et al. 2020) at the level of  the whole 
song. Similarly, although both note BW and gap BW decreased, note 
duration and (especially) gap duration decreased more, resulting in an 

increase in voiced and unvoiced FM speed. We also saw a substantial 
decrease in gap duration with order, suggesting that song rate drives 
the reduction in gap duration (Supplementary Figure S7a). We con-
clude that gap duration is the only simple acoustic variable in our 
study that improves with warm-up. Improvement in gap duration 
compensates for decreases in the performance of  other variables, 
driving improvements in recovery time and unvoiced FM during the 
dawn chorus.

One acoustic variable (gap duration) is the main driver of  im-
provement in performance during the dawn chorus, raising the 
question of  whether to focus on that variable alone or the com-
posite variables (deviation scores) derived from trade-off plots 
(Cardoso 2017). The trade-offs observed in this study and in Logue 
et al. 2020 show that the processes that generate songs are lim-
ited. Songs that require birds to approach those limits more closely 
require higher performance whether those songs make greater 
demands along one or both acoustic axes of  the trade-off graph. 
Thus, we can conclude that performance improves during the 
dawn chorus whether we focus on simple acoustic variables or de-
viation scores.

This study investigates the sender’s side of  the communica-
tion interaction, so it is reasonable to focus on the kind of  vari-
able whose production is most constrained. Consider the deviation 
score recovery time as an example. Recovery time is more constrained 
than the simple acoustic variable gap duration because recovery time 
accounts for the mediating effect of  note duration on gap duration. 
Skewness analysis supports this conclusion. All deviation scores in 
our study were characterized by higher skewness than their con-
stituent acoustic variables (Logue et al. 2020). We conclude that 
deviation scores are more constrained than the simple acoustic 
variables from which they are calculated, so it is appropriate to 
focus on deviation scores when considering constraints on signal 
production.

We observed slightly higher vocal performance at intermediate 
temperatures in two of  the three performance metrics (Figure 5a, 
c). If  these trends are repeatable, they are evidence that some kinds 
of  vocal performance peak at intermediate temperatures. Low per-
formance at low temperatures is consistent with the idea that phys-
ical warming contributes to vocal warm-up. Follow-up studies that 
examine the relationships among Ta, body temperature, and vocal 
performance would be useful. Low performance at high temperat-
ures is a common finding (Schulte et al. 2011; Brandt et al. 2018; 
Levesque and Marshall 2021). If  high ambient temperature nega-
tively affects vocal performance, increases in average temperatures 
caused by global warming might lower performance and select for 
males that sing during cooler periods (e.g., earlier in the morning).

In Adelaide’s warbler, the dawn chorus is characterized not only 
by high song rates, but also by frequent ST switches and specific 
STs from the singer’s repertoire (“Category B” songs; Staicer 1992; 
Kaluthota et al. 2019). Frequent ST switching may warm up the 
voice better than monotonous singing if  different STs require dif-
ferent motor patterns. Similarly, Category B songs may promote 
warm up if, for example, they require more varied motor patterns 
than do other songs (Staicer 1996). Previous findings that Category 
B songs have lower performance than Category A songs may be 
attributable to the fact that Category B songs tend to be sung be-
fore birds are fully warmed up (Beebee 2004; Price and Crawford 
2013). Future studies should investigate the effects of  ST switching 
and the use of  Category B songs on vocal warm-up to further char-
acterize the relationship between the structure of  the dawn chorus 
and its function(s).
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Voiced FM behaved differently than the other deviation scores 
in the Order effects, Ta effects, and song rate analysis. One expla-
nation for these differences is that long note durations correspond 
to low voiced FM performance but high recovery time performance. 
Singers may sacrifice voiced FM to allow greater improvements 
in recovery time. The relative importance of  different performance 
variables to both signalers and signal receivers is an important area 
for future study. A second possible explanation for the divergent 
behavior of  voiced FM is that our measure of  voiced FM is blind 
to patterns of  within-note frequency modulation that do not af-
fect note BW (Logue et al. 2020; Goller 2022). An analytic method 
that traces the contour of  each note, like FEX, while measuring 
voiced FM separately from unvoiced FM would overcome this lim-
itation. A third possible explanation is that our voiced FM metric 
ignores an important constraint. The songbird syrinx includes two 
sound sources that specialize in different frequency ranges (Suthers 
and Zollinger 2008). Our measure of  voiced FM does not consider 
how FM may be constrained differently depending on whether the 
bird is using the right side of  the syrinx, the left side, or both sides 
(Goller 2022).

Future studies with Adelaide’s warblers should test whether per-
formance functions in mate attraction and territory defense. The 
warm-up hypothesis for the function of  the dawn chorus would be 
on firmer footing if  it were clear that vocal performance influenced 
receiver responses in this species, as it appears to in some other song-
birds (de Kort et al. 2009; Byers et al. 2010; Phillips and Derryberry 
2017). A female preference for high performance songs, combined 
with our finding that Adelaide’s warblers’ vocal performance in-
creases during the dawn chorus, could explain why the dawn chorus 
is restricted to the breeding season in this species (Staicer 1992). 
Receiver-side studies could also clarify which acoustic parameters, 
if  any, are most salient to receivers (Phillips and Derryberry 2017).

We conclude that male Adelaide’s warblers’ vocal performance 
increases rapidly during the dawn chorus because vigorous (high 
rate) singing temporarily increases performance potential. Our 
results are the strongest support to date for the hypothesis that 
increasing vocal performance via warming up has contributed to 
the elaboration of  the dawn chorus. A convincing demonstration 
of  that hypothesis would require evidence that high vocal perfor-
mance is adaptive in this taxon, and that evolutionary elaboration 
of  the dawn chorus coincides with increased performance after 
dawn. An alternative interpretation of  our data is that participation 
in the dawn chorus may warm up the voice incidentally without 
any adaptive benefit. We find this non-adaptive explanation less 
likely because Adelaide’s warblers often sing near their perfor-
mance limits (Logue et al. 2020) and vocal performance has been 
shown to have important fitness-related consequences in other spe-
cies (Podos and Sung 2020). The hypothesis that warming up the 
voice is one function of  the dawn chorus is compatible with other 
hypothesized functions of  the dawn chorus. It seems plausible that 
different evolutionary paths have led to elaborate dawn choruses in 
different taxa (Staicer et al. 1996; Gil and Llusia 2020).

More broadly, this study highlights a possible role for “warming 
up” in the evolution of  signaling behavior. It is well-established that 
selection for immediate communication functions shapes signaling 
behavior. While Adelaide’s warblers may (and likely do) commu-
nicate during the dawn chorus, our study suggests that singing be-
havior during the dawn chorus has also been shaped by selection 
favoring rapid vocal warm-up. It may be the case that signaling be-
havior in other species is also influenced by selection to warm up 
quickly and efficiently.
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Supplementary material can be found at Behavioral Ecology online.
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